利用全局特征对超声图像进行描述具有一定的局限性,而且对图像进行手工标注的成本过高,为解决上述问题,本文提出了一种利用局部特征描述超声图像,并结合多示例学习对超声图像进行分类的新方法.粗略定位图像中的感兴趣区域(Region of int...利用全局特征对超声图像进行描述具有一定的局限性,而且对图像进行手工标注的成本过高,为解决上述问题,本文提出了一种利用局部特征描述超声图像,并结合多示例学习对超声图像进行分类的新方法.粗略定位图像中的感兴趣区域(Region of interest,ROI),并提取局部特征,将感兴趣区域看作由局部特征构成的示例包,采用自组织映射(Self-organizing map,SOM)的方法对示例特征进行矢量量化,采用Bag of words方法将示例特征映射到示例包空间,进而采用传统的支持向量机对示例包进行分类.本文提出的方法在临床超声图像上进行了实验,实验结果表明,该方法具有良好的泛化能力和较高的准确性.展开更多
文摘利用全局特征对超声图像进行描述具有一定的局限性,而且对图像进行手工标注的成本过高,为解决上述问题,本文提出了一种利用局部特征描述超声图像,并结合多示例学习对超声图像进行分类的新方法.粗略定位图像中的感兴趣区域(Region of interest,ROI),并提取局部特征,将感兴趣区域看作由局部特征构成的示例包,采用自组织映射(Self-organizing map,SOM)的方法对示例特征进行矢量量化,采用Bag of words方法将示例特征映射到示例包空间,进而采用传统的支持向量机对示例包进行分类.本文提出的方法在临床超声图像上进行了实验,实验结果表明,该方法具有良好的泛化能力和较高的准确性.