均匀设计是基于试验点在整个试验范围内均匀散布的一种试验设计方法。介绍了该法的特点及其软件的基本功能与基本操作过程。从均匀设计试验方案的建立、试验结果的回归分析及优化、镀液最佳配方的试验验证3个方面介绍了均匀设计法在Ni P...均匀设计是基于试验点在整个试验范围内均匀散布的一种试验设计方法。介绍了该法的特点及其软件的基本功能与基本操作过程。从均匀设计试验方案的建立、试验结果的回归分析及优化、镀液最佳配方的试验验证3个方面介绍了均匀设计法在Ni P MoS2化学复合镀中的应用,并得到了最佳的Ni P MoS2化学复合镀液配方。该法应用于化学镀的工艺试验,简便可行。展开更多
Photocatalytic hydrogen generation from water-splitting holds huge promise for resolving the current energy shortage and environmental issues.Nevertheless,it is still challenging so far to develop non-noble-metal phot...Photocatalytic hydrogen generation from water-splitting holds huge promise for resolving the current energy shortage and environmental issues.Nevertheless,it is still challenging so far to develop non-noble-metal photocatalysts which are efficient toward solar-powered hydrogen evolution reaction(HER).In this work,through an ultrasonic water-bath strategy combined with solvothermal and electrostatic assembly processes,we obtain homogeneous Cd_(1-x)Zn_(x)S–Ni_(2)P–MoS_(2) hybrid nano-spheres consisting of Cd_(1-x)Zn_(x)S solid solutions decorated by Ni_(2)P and 1 T/2 H MoS_(2) cocatalysts,which demonstrate excellent activity and stability for visible-light-responsive(λ>420 nm)H_(2) production.Specifically,the Cd_(1-x)Zn_(x)S-Ni_(2)P-MoS_(2) nano-spheres with 2 wt%Ni_(2)P and 0.2 wt%MoS_(2)(CZ_(0.7)S–2 N–0.2 M)exhibit the optimal HER activity of 55.77 mmol·g^(-1)·h^(-1),about 47 and 32 times more than that of CZ_(0.7)S and Pt–CZ_(0.7)S,respectively.The outstanding HER performance of Cd_(1-x)Zn_(x)S–Ni_(2)P–MoS_(2) can be ascribed to the presence of abundant HER active sites in Ni2 P nanoparticles and 1 T/2 H MoS_(2) nanosheets as well as the effective transfer and separation of charge carriers.Moreover,the coupling sequence of cocatalysts in Cd_(1-x)Zn_(x)S–Ni_(2)P–MoS_(2) is found to be critical in the regulation of charge transfer pathways and thus the resultant photocatalytic efficiency.The results displayed here could facilitate the engineering of high-performance photocatalysts employing multi-component cocatalysts for sustainable solar-to-fuel conversion.展开更多
文摘均匀设计是基于试验点在整个试验范围内均匀散布的一种试验设计方法。介绍了该法的特点及其软件的基本功能与基本操作过程。从均匀设计试验方案的建立、试验结果的回归分析及优化、镀液最佳配方的试验验证3个方面介绍了均匀设计法在Ni P MoS2化学复合镀中的应用,并得到了最佳的Ni P MoS2化学复合镀液配方。该法应用于化学镀的工艺试验,简便可行。
基金supported by the Foundation of State Key Laboratory of Structural Chemistry(20190021)the National Natural Science Foundation of China(51802170,21801150,51772162)+1 种基金the Natural Science Foundation of Shandong Province(ZR2018BEM014,ZR2019JQ14,ZR2019MB001)the Taishan Scholar Project of Shandong Province。
文摘Photocatalytic hydrogen generation from water-splitting holds huge promise for resolving the current energy shortage and environmental issues.Nevertheless,it is still challenging so far to develop non-noble-metal photocatalysts which are efficient toward solar-powered hydrogen evolution reaction(HER).In this work,through an ultrasonic water-bath strategy combined with solvothermal and electrostatic assembly processes,we obtain homogeneous Cd_(1-x)Zn_(x)S–Ni_(2)P–MoS_(2) hybrid nano-spheres consisting of Cd_(1-x)Zn_(x)S solid solutions decorated by Ni_(2)P and 1 T/2 H MoS_(2) cocatalysts,which demonstrate excellent activity and stability for visible-light-responsive(λ>420 nm)H_(2) production.Specifically,the Cd_(1-x)Zn_(x)S-Ni_(2)P-MoS_(2) nano-spheres with 2 wt%Ni_(2)P and 0.2 wt%MoS_(2)(CZ_(0.7)S–2 N–0.2 M)exhibit the optimal HER activity of 55.77 mmol·g^(-1)·h^(-1),about 47 and 32 times more than that of CZ_(0.7)S and Pt–CZ_(0.7)S,respectively.The outstanding HER performance of Cd_(1-x)Zn_(x)S–Ni_(2)P–MoS_(2) can be ascribed to the presence of abundant HER active sites in Ni2 P nanoparticles and 1 T/2 H MoS_(2) nanosheets as well as the effective transfer and separation of charge carriers.Moreover,the coupling sequence of cocatalysts in Cd_(1-x)Zn_(x)S–Ni_(2)P–MoS_(2) is found to be critical in the regulation of charge transfer pathways and thus the resultant photocatalytic efficiency.The results displayed here could facilitate the engineering of high-performance photocatalysts employing multi-component cocatalysts for sustainable solar-to-fuel conversion.