In order to apply the terminal sliding mode control to robot manipulators,prior knowledge of the exact upper bound of parameter uncertainties,and external disturbances is necessary.However,this bound will not be easil...In order to apply the terminal sliding mode control to robot manipulators,prior knowledge of the exact upper bound of parameter uncertainties,and external disturbances is necessary.However,this bound will not be easily determined because of the complexity and unpredictability of the structure of uncertainties in the dynamics of the robot.To resolve this problem in robot control,we propose a new robust adaptive terminal sliding mode control for tracking problems in robotic manipulators.By applying this adaptive controller,prior knowledge is not required because the controller is able to estimate the upper bound of uncertainties and disturbances.Also,the proposed controller can eliminate the chattering effect without losing the robustness property.The stability of the control algorithm can be easily verified by using Lyapunov theory.The proposed controller is tested in simulation on a two-degree-of-freedom robot to prove its effectiveness.展开更多
Low-thrust Earth-orbit transfers with 10^- 5-order thrust-to-weight ratios involve a large number of orbital revolutions which poses a real challenge to trajectory optimization. This article develops a direct method t...Low-thrust Earth-orbit transfers with 10^- 5-order thrust-to-weight ratios involve a large number of orbital revolutions which poses a real challenge to trajectory optimization. This article develops a direct method to optimize minimum-time low-thrust many-revolution Earth-orbit transfers. A parameterized control law in each orbit, in the form of the true optimal control, is proposed, and the time history of the parameters governing the control law is interpolated through a finite number of nodal values. The orbital averaging method is used to significantly reduce the computational workload and the trajectory optimization is conducted based on the orbital averaging dynamics expressed by nonsingular equinoctial elements. Furthermore, Earth's shadowing and perturbation effects are taken into account. The optimal transfer problem is thus converted to the parameter optimization problem that can be solved by nonlinear programming. Taking advantage of the mapping between the parameterized control law and the Lyapunov control law, a technique is proposed to acquire good initial guesses for optimization variables, which results in enlarged convergence domain of the direct optimization method. Numerical examples of optimal Earth-orbit transfers are presented.展开更多
This article describes a method of vehicle dynamics estimation for impending rollover detection. We estimate vehicle dynamic states in presence of the road bank angle as a disturbance in the vehicle model using a robu...This article describes a method of vehicle dynamics estimation for impending rollover detection. We estimate vehicle dynamic states in presence of the road bank angle as a disturbance in the vehicle model using a robust observer. The estimated roll angle and roll rate are used to compute the rollover index which is based on the prediction of the lateral load transfer. In order to anticipate rollover detection, a new method is proposed to compute the time to rollover(TTR) using the load transfer ratio(LTR). The nonlinear model, deduced from the vehicle lateral and roll dynamics, is represented by a Takagi-Sugeno(T-S) fuzzy model. This representation is used to account for the nonlinearities of lateral cornering forces. The proposed T-S observer is designed with unmeasurable premise variables to cater for non-availability of the slip angles measurement. The proposed approach is evaluated using Car Sim simulator under different driving scenarios. Simulation results show good efficiency of the proposed T-S observer and the rollover detection method.展开更多
文摘In order to apply the terminal sliding mode control to robot manipulators,prior knowledge of the exact upper bound of parameter uncertainties,and external disturbances is necessary.However,this bound will not be easily determined because of the complexity and unpredictability of the structure of uncertainties in the dynamics of the robot.To resolve this problem in robot control,we propose a new robust adaptive terminal sliding mode control for tracking problems in robotic manipulators.By applying this adaptive controller,prior knowledge is not required because the controller is able to estimate the upper bound of uncertainties and disturbances.Also,the proposed controller can eliminate the chattering effect without losing the robustness property.The stability of the control algorithm can be easily verified by using Lyapunov theory.The proposed controller is tested in simulation on a two-degree-of-freedom robot to prove its effectiveness.
基金National Natural Science Foundation of China (10603005)
文摘Low-thrust Earth-orbit transfers with 10^- 5-order thrust-to-weight ratios involve a large number of orbital revolutions which poses a real challenge to trajectory optimization. This article develops a direct method to optimize minimum-time low-thrust many-revolution Earth-orbit transfers. A parameterized control law in each orbit, in the form of the true optimal control, is proposed, and the time history of the parameters governing the control law is interpolated through a finite number of nodal values. The orbital averaging method is used to significantly reduce the computational workload and the trajectory optimization is conducted based on the orbital averaging dynamics expressed by nonsingular equinoctial elements. Furthermore, Earth's shadowing and perturbation effects are taken into account. The optimal transfer problem is thus converted to the parameter optimization problem that can be solved by nonlinear programming. Taking advantage of the mapping between the parameterized control law and the Lyapunov control law, a technique is proposed to acquire good initial guesses for optimization variables, which results in enlarged convergence domain of the direct optimization method. Numerical examples of optimal Earth-orbit transfers are presented.
基金supported by the"Conseil Régional de Picardie"and the European Regional Development Fund within the framework of the project"SEDVAC"
文摘This article describes a method of vehicle dynamics estimation for impending rollover detection. We estimate vehicle dynamic states in presence of the road bank angle as a disturbance in the vehicle model using a robust observer. The estimated roll angle and roll rate are used to compute the rollover index which is based on the prediction of the lateral load transfer. In order to anticipate rollover detection, a new method is proposed to compute the time to rollover(TTR) using the load transfer ratio(LTR). The nonlinear model, deduced from the vehicle lateral and roll dynamics, is represented by a Takagi-Sugeno(T-S) fuzzy model. This representation is used to account for the nonlinearities of lateral cornering forces. The proposed T-S observer is designed with unmeasurable premise variables to cater for non-availability of the slip angles measurement. The proposed approach is evaluated using Car Sim simulator under different driving scenarios. Simulation results show good efficiency of the proposed T-S observer and the rollover detection method.