In the present paper a numerical method is developed to approximate the solution of two-dimensional Nonlinear Schrodinger equation in the presence of a sin- gular potential. The method leads to generalized Lyapunov-Sy...In the present paper a numerical method is developed to approximate the solution of two-dimensional Nonlinear Schrodinger equation in the presence of a sin- gular potential. The method leads to generalized Lyapunov-Sylvester algebraic opera- tors that are shown to be invertible using original topological and differential calculus issued methods. The numerical scheme is proved to be consistent, convergent and sta- ble using the Lyapunov criterion, lax equivalence theorem and the properties of the generalized Lyapunov-Sylvester operators.展开更多
电力系统使用通信网络进行动态调频时引起的时滞问题会对系统稳定性造成很大威胁。针对负荷频率控制中的网络化时滞问题,建立考虑时变时滞特性的负荷频率控制离散化状态空间模型。采用多求和不等式,构造一种具有低保守性的Lyapunov稳定...电力系统使用通信网络进行动态调频时引起的时滞问题会对系统稳定性造成很大威胁。针对负荷频率控制中的网络化时滞问题,建立考虑时变时滞特性的负荷频率控制离散化状态空间模型。采用多求和不等式,构造一种具有低保守性的Lyapunov稳定判据来求解区间时变时滞负荷频率控制(load frequency control,LFC)系统的稳定裕度。在此基础上,推导时滞相关输出反馈增益的线性矩阵不等式(linear matrix inequality,LMI)准则来设计二次调频控制器参数。仿真结果表明,该文所提出的稳定判据能够求解更大的时滞稳定裕度,具有较低的保守性。所提出的控制器设计准则能够快速求解时变时滞下输出反馈增益,有效抑制小扰动下系统的频率振荡,使系统具有时滞稳定性。展开更多
文摘In the present paper a numerical method is developed to approximate the solution of two-dimensional Nonlinear Schrodinger equation in the presence of a sin- gular potential. The method leads to generalized Lyapunov-Sylvester algebraic opera- tors that are shown to be invertible using original topological and differential calculus issued methods. The numerical scheme is proved to be consistent, convergent and sta- ble using the Lyapunov criterion, lax equivalence theorem and the properties of the generalized Lyapunov-Sylvester operators.
文摘电力系统使用通信网络进行动态调频时引起的时滞问题会对系统稳定性造成很大威胁。针对负荷频率控制中的网络化时滞问题,建立考虑时变时滞特性的负荷频率控制离散化状态空间模型。采用多求和不等式,构造一种具有低保守性的Lyapunov稳定判据来求解区间时变时滞负荷频率控制(load frequency control,LFC)系统的稳定裕度。在此基础上,推导时滞相关输出反馈增益的线性矩阵不等式(linear matrix inequality,LMI)准则来设计二次调频控制器参数。仿真结果表明,该文所提出的稳定判据能够求解更大的时滞稳定裕度,具有较低的保守性。所提出的控制器设计准则能够快速求解时变时滞下输出反馈增益,有效抑制小扰动下系统的频率振荡,使系统具有时滞稳定性。