期刊文献+
共找到3,124篇文章
< 1 2 157 >
每页显示 20 50 100
Orbit determination for Chang'E-2 lunar probe and evaluation of lunar gravity models 被引量:30
1
作者 Li PeiJia Hu XiaoGong +5 位作者 Huang Yong Wang GuangLi Jiang DongRong Zhang XiuZhong Cao JianFeng Xin Nan 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2012年第3期514-522,共9页
The Unified S-Band (USB) ranging/Doppler system and the Very Long Baseline Interferometry (VLBI) system as the ground tracking system jointly supported the lunar orbit capture of both Chang'E-2 (CE-2) and Chang... The Unified S-Band (USB) ranging/Doppler system and the Very Long Baseline Interferometry (VLBI) system as the ground tracking system jointly supported the lunar orbit capture of both Chang'E-2 (CE-2) and Chang'E-1 (CE-1) missions. The tracking system is also responsible for providing precise orbits for scientific data processing. New VLBI equipment and data processing strategies have been proposed based on CE-1 experiences and implemented for CE-2. In this work the role VLBI tracking data played was reassessed through precision orbit determination (POD) experiments for CE-2. Significant improve- ment in terms of both VLBI delay and delay rate data accuracy was achieved with the noise level of X-band band-width syn- thesis delay data reaching 0.2-0.3 ns. Short-arc orbit determination experiments showed that the combination of only 15 min's range and VLBI data was able to improve the accuracy of 3 h's orbit using range data only by a 1-1.5 order of magnitude, confirming a similar conclusion for CE-1. Moreover, because of the accuracy improvement, VLBI data was able to contribute to CE-2's long-arc POD especially in the along-track and orbital normal directions. Orbital accuracy was assessed through the orbital overlapping analysis (2 h arc overlapping for 18 h POD arc). Compared with about 100 m position error of CE-l's 200 kin x 200 km lunar orbit, for CE-2's 100 km x 100 km lunar orbit, the position errors were better than 31 and 6 m in the radial direction, and for CE-2's 15 km^100 km orbit, the position errors were better than 45 and 12 m in the radial direction. In addi- tion, in trying to analyze the Delta Differential One-Way Ranging (ADOR) experiments data we concluded that the accuracy of ADOR delay was dramatically improved with the noise level better than 0.1 ns and systematic errors better calibrated, and the Short-arc POD tests with ADOR data showed excellent results. Although unable to support the development of an independent lunar gravity model, the track 展开更多
关键词 Chang'E-2 VLBI orbit determination lunar gravity field
原文传递
The global image of the Moon obtained by the Chang'E-1:Data processing and lunar cartography 被引量:23
2
作者 LI ChunLai1, LIU JianJun1, REN Xin1, MOU LingLi1, ZOU YongLiao1, ZHANG HongBo1, Lü Chang1, LIU JianZhong1, ZUO Wei1, SU Yan1, WEN WeiBin1, BIAN Wei1, ZHAO BaoChang2, YANG JianFeng2, ZOU XiaoDuan1, WANG Min1, XU Chun1, KONG DeQing1, WANG XiaoQian1, WANG Fang1, GENG Liang1, ZHANG ZhouBin1, ZHENG Lei1, ZHU XinYing1, LI JunDuo1 & OUYANG ZiYuan11 National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China 2 Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China 《Science China Earth Sciences》 SCIE EI CAS 2010年第8期1091-1102,共12页
The global lunar image of the first phase of Chinese Lunar Exploration Program is the first image that covered all over the surface of the Moon. It will serve as a critical foundation for succeeding exploration and sc... The global lunar image of the first phase of Chinese Lunar Exploration Program is the first image that covered all over the surface of the Moon. It will serve as a critical foundation for succeeding exploration and scientific research. In this paper, the acquisition, characteristics, and data quality of Chang'E-1 CCD image data are described in detail. Also described are the methodology and procedure of data processing. According to rule of planetary cartography, the image data have been processed, geometrically corrected, and then mosaicked and merged in a scale of 1:2.5 million. The results of data processing and charting show that the image data of Chang'E-1 CCD and their geometric precision meet the demand of charting a map in the scale of 1:2.5 million. The relative geometric positioning precision of the global image is better than 240 m, and the absolute geometric positioning precision is slightly better than that of the ULCN2005 and Clementine lunar basemap (V2.0). The plane positioning precision is approximately 100-1500 m. This global image proves to be the best global image of the Moon so far in terms of space coverage, image quality, and positioning precision. 展开更多
关键词 Chang’E-1 lunar CCD data processing lunar IMAGE POSITION lunar GLOBAL IMAGE
原文传递
Lunar topographic model CLTM-s01 from Chang’E-1 laser altimeter 被引量:22
3
作者 PING JinSong HUANG Qian +3 位作者 YAN JianGuo CAO JianFeng TANG GeShi SHU Rong 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2009年第7期1105-1114,共10页
More than 3 million range measurements from the Chang’E-1 Laser Altimeter have been used to produce a global topographic model of the Moon with improved accuracy. Our topographic model, a 360th degree and order spher... More than 3 million range measurements from the Chang’E-1 Laser Altimeter have been used to produce a global topographic model of the Moon with improved accuracy. Our topographic model, a 360th degree and order spherical harmonic expansion of the lunar radii, is designated as Chang’E-1 Lunar Topography Model s01 (CLTM-s01). This topographic field, referenced to a mean radius of 1738 km, has an absolute vertical accuracy of approximately 31 m and a spatial resolution of 0.25° (~7.5 km). This new lunar topographic model has greatly improved previous models in spatial coverage, accuracy and spatial resolution, and also shows the polar regions with the altimeter results for the first time. From CLTM-s01, the mean, equatorial, and polar radii of the Moon are 1737103, 1737646, and 1735843 m, respectively. In the lunar-fixed coordinate system, this model shows a COM/COF offset to be (?1.777, ?0.730, 0.237) km along the x, y, and z directions, respectively. All the basic lunar shape parameters derived from CLTM-s01 are in agreement with the results of Clementine GLTM2, but CLTM-s01 offers higher accuracy and reliability due to its better global samplings. 展开更多
关键词 Chang’E-1 LASER ALTIMETER (LAM) lunar topographic MODEL
原文传递
Free return orbit design and characteristics analysis for manned lunar mission 被引量:24
4
作者 PENG QiBo SHEN HongXin LI HaiYang 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第12期3243-3250,共8页
A circumlunar free return orbit design model that satisfies manned lunar mission constraints is established. By combining analytical method with numerical method,a serial orbit design strategy from initial value desig... A circumlunar free return orbit design model that satisfies manned lunar mission constraints is established. By combining analytical method with numerical method,a serial orbit design strategy from initial value design to precision solution is proposed. A simulation example is given,and the conclusion indicates that the method has excellent convergence performance and precision. According to a great deal of simulation results solved by the method,the free return orbit characters such as accessible moon orbit parameters,return orbit parameters,transfer delta velocity,etc. are analyzed,which can supply references to constitute manned lunar mission orbit scheme. 展开更多
关键词 manned lunar mission free return orbit orbit design orbit characters
原文传递
Laser altimetry data of Chang'E-1 and the global lunar DEM model 被引量:20
5
作者 LI ChunLai1, REN Xin1, LIU JianJun1, ZOU XiaoDuan1, MU LingLi1, WANG JianYu2, SHU Rong2, ZOU YongLiao1, ZHANG HongBo1, Lü Chang1, LIU JianZhong1, ZUO Wei1, SU Yan1, WEN WeiBin1, BIAN Wei1, WANG Min1, XU Chun1, KONG DeQing1, WANG XiaoQian1, WANG Fang1, GENG Liang1, ZHANG ZhouBin1, ZHENG Lei1, ZHU XinYing1, LI JunDuo1 & OUYANG ZiYuan1 1 National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China 2 Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China 《Science China Earth Sciences》 SCIE EI CAS 2010年第11期1582-1593,共12页
The Laser AltiMeter (LAM), as one of the main payloads of Chang'E-1 probe, is used to measure the topography of the lunar surface. It performed the first measurement at 02:22 on November 28th, 2007. Up to December... The Laser AltiMeter (LAM), as one of the main payloads of Chang'E-1 probe, is used to measure the topography of the lunar surface. It performed the first measurement at 02:22 on November 28th, 2007. Up to December 4th 2008, the total number of measurements was approximately 9.12 million, covering the whole surface of the Moon. Using the LAM data, we constructed a global lunar Digtal Elevation Model (DEM) with 3 km spatial resolution. The model shows pronounced morphological characteristics, legible and vivid details of the lunar surface. The plane positioning accuracy of the DEM is 445 m (1σ), and the vertical accuracy is 60 m (1σ). From this DEM model, we measured the full range of the altitude difference on the lunar sur-face, which is about 19.807 km. The highest point is 10.629 km high, on a peak between crater Korolev and crater Dirichlet-Jackson at (158.656°W, 5.441°N) and the lowest point is -9.178 km in height, inside crater Antoniadi (172.413°W, 70.368°S) in the South Pole-Aitken Basin. By comparison, the DEM model of Chang'E-1 is better than the USA ULCN2005 in accuracy and resolution and is probably identical to the DEM of Japan SELENE, but the DEM of Chang'E-1 reveals a new lowest point, clearly lower than that of SELENE. 展开更多
关键词 Chang’E-1 LASER ALTIMETRY lunar DEM topographic TOPS of the MOON
原文传递
Relative position determination of a lunar rover using high-accuracy multi-frequency same-beam VLBI 被引量:17
6
作者 LIU QingHui1, CHEN Ming1, XIONG WeiMing2, QIAN ZhiHan1, LI JinLing1, HAO WangHong1,4, WANG GuangLi1, ZHENG WeiMin1, GUAN Di3, ZHU RenJie1, WANG WeiHua1, ZHANG XiuZhong1, JIANG DongRong1, SHU FengChun1, PING JinSong1 & HONG XiaoYu11 Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China 2 Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190, China +1 位作者 3 Lunar Explorer Engineering General Department, Chinese Academy of Sciences, Beijing 100012, China 4 Beijing Institute of Tracking and Telecommunications Technology, Beijing 100094, China 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2010年第3期571-578,共8页
Multi-frequency same-beam VLBI means that two explorers with a small separation angle are simultaneously observed with the main beam of receiving antennas. In the same-beam VLBI, the differential phase delay between t... Multi-frequency same-beam VLBI means that two explorers with a small separation angle are simultaneously observed with the main beam of receiving antennas. In the same-beam VLBI, the differential phase delay between two explorers and two receiving telescopes can be obtained with a small error of several picoseconds. The differential phase delay, as the observable of the same-beam VLBI, gives the separation angular information of the two explorers in the celestial sphere. The two-dimensional relative position on the plane-of-sky can thus be precisely determined with an error of less than 1 m for a distance of 3.8×105 km far away from the earth, by using the differential phase delay obtained with the four Chinese VLBI stations. The relative position of a lunar rover on the lunar surface can be determined with an error of 10 m by using the differential phase delay data and the range data for the lander when the lunar topography near the rover and the lander can be determined with an error of 10 m. 展开更多
关键词 same-beam VLBI differential phase delay relative position DETERMINATION lunar ROVER
原文传递
Data processing and initial results of Chang'e-3 lunar penetrating radar 被引量:14
7
作者 Yan Su Guang-You Fang +8 位作者 Jian-Qing Feng Shu-Guo Xing Yi-Cai Ji Bin Zhou Yun-Ze Gao Han Li Shun Dai Yuan Xiao Chun-Lai Li 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2014年第12期1623-1632,共10页
To improve our understanding of the formation and evolution of the Moon, one of the payloads onboard the Chang'e-3 (CE-3) rover is Lunar Penetrating Radar (LPR). This investigation is the first attempt to explore... To improve our understanding of the formation and evolution of the Moon, one of the payloads onboard the Chang'e-3 (CE-3) rover is Lunar Penetrating Radar (LPR). This investigation is the first attempt to explore the lunar subsurface structure by using ground penetrating radar with high resolution. We have probed the subsur- face to a depth of several hundred meters using LPR. In-orbit testing, data processing and the preliminary results are presented. These observations have revealed the con- figuration of regolith where the thickness of regolith varies from about 4 m to 6 m. In addition, one layer of lunar rock, which is about 330 m deep and might have been accumulated during the depositional hiatus of mare basalts, was detected. 展开更多
关键词 space vehicles: instruments: lunar Penetrating Radar -- techniques:radar astronomy -- methods: data processing -- Moon: lunar subsurface -- Moon:regolith
下载PDF
Overloading of Landing Based on the Deformation of the Lunar Lander 被引量:16
8
作者 陈金宝 聂宏 +1 位作者 张明 汪岸柳 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2008年第1期43-47,共5页
Along with the progress of sciences and technologies, a lot of explorations are taken in many countries or organizations in succession. Lunar, the natural satellite of the earth, become a focus of the space discovery ... Along with the progress of sciences and technologies, a lot of explorations are taken in many countries or organizations in succession. Lunar, the natural satellite of the earth, become a focus of the space discovery again recently because of its abundant resource and high value in use. Lunar exploration is also one of the most important projects in China. A primary objective of the probe in lunar is to soft-land a manned spacecraft on the lunar surface. The soft-landing system is the key composition of the lunar lander. In the overall design of lunar lander, the analysis of touchdown dynamics during landing stage is an important work. The rigid-flexible coupling dynamics of a system with flexible cantilevers attached to the main lander is analyzed. The equations are derived from the subsystem method. Results show that the deformations of cantilevers have considerable effect on the overloading of the lunar lander system. 展开更多
关键词 lunar lander rigid-flexible coupling DEFORMATION OVERLOADING
下载PDF
The application of the instantaneous states reduction to the orbital monitoring of pivotal arcs of the Chang'E-1 satellite 被引量:15
9
作者 LI JinLing GUO Li +1 位作者 QIAN ZhiHan PING JinSong 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2009年第12期1833-1841,共9页
In the Chinese lunar exploration project,the Chang'E-1 (CE-1) satellite was jointly monitored by the United S-band range and Doppler and the VLBI technique. A real-time reduction of the tracking data is realized t... In the Chinese lunar exploration project,the Chang'E-1 (CE-1) satellite was jointly monitored by the United S-band range and Doppler and the VLBI technique. A real-time reduction of the tracking data is realized to deduce the time series of the instantaneous state vectors (ISV) (position and velocity vec-tors) of the CE-1 satellite,and is applied to the orbital monitoring of pivotal arcs. This paper introduces this real-time data reduction method and its application to the orbital monitoring of pivotal arcs of the CE-1 satellite in order to serve as a source of criticism and reference. 展开更多
关键词 lunar exploration ORBITAL MANEUVER trace MONITORING instantaneous states CE-1 SATELLITE
原文传递
Lunar Penetrating Radar onboard the Chang'e-3 mission 被引量:15
10
作者 Guang-You Fang Bin Zhou +11 位作者 Yi-Cai Ji Qun-Ying Zhang Shao-Xiang Shen Yu-Xi Li Hong-Fei Guan Chuan-Jun Tang Yun-Ze Gao Wei Lu Sheng-Bo Ye Hai-Dong Han Jin Zheng Shu-Zhi Wang 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2014年第12期1607-1622,共16页
Lunar Penetrating Radar (LPR) is one of the important scientific instru- ments onboard the Chang'e-3 spacecraft. Its scientific goals are the mapping of lunar regolith and detection of subsurface geologic structure... Lunar Penetrating Radar (LPR) is one of the important scientific instru- ments onboard the Chang'e-3 spacecraft. Its scientific goals are the mapping of lunar regolith and detection of subsurface geologic structures. This paper describes the goals of the mission, as well as the basic principles, design, composition and achievements of the LPR. Finally, experiments on a glacier and the lunar surface are analyzed. 展开更多
关键词 Chang'e-3 mission -- moon rover -- lunar Penetrating Radar
下载PDF
基于多源数据的月球大地构造纲要图编制:以LQ-4地区为例 被引量:16
11
作者 陈建平 王翔 +5 位作者 许延波 颜丹平 刘少峰 郑永春 闫柏琨 吴昀昭 《地学前缘》 EI CAS CSCD 北大核心 2012年第6期1-14,共14页
月球表面的地质构造要素主要包括环形构造、线性构造、地体构造及大型盆地构造等。月球大地构造纲要图从物质组成、构造要素、构造单元上对月表的构造状态进行全面的梳理、统计和分析。利用CE-1CCD 2C像数据、LROC宽视角影像数据、CE-1I... 月球表面的地质构造要素主要包括环形构造、线性构造、地体构造及大型盆地构造等。月球大地构造纲要图从物质组成、构造要素、构造单元上对月表的构造状态进行全面的梳理、统计和分析。利用CE-1CCD 2C像数据、LROC宽视角影像数据、CE-1IIM 2C干涉成像光谱仪数据、Clementine紫外可见光影像数据、LOLA激光高度计数据识别月球表面各类矿物组分、线形构造、环形构造、火山构造和穹窿构造以及确定构造要素和构造单元的时代、古老撞击坑和大型盆地边界以及对月球表面撞击坑形态、大小、分布、密度及月球断裂和环形影像解译,充分认识月表基本情况,精细划分月表构造地貌单元,综合利用上述分析结果与国际上研究的进展,确定大地构造区划的基本原则,厘定月表重大构造事件与演化序列。依据岩石、月壤、构造地貌与构造形迹的综合分类,拟定大地构造区划的图例、图识规范,确定不同类型环形构造影像、线性构造影像、高地、盆地和月海等大地构造单元,进而编制大地构造区划图,并对重点区域构造形迹进行研究。虹湾区域(LQ-4)月球数字构造编图研究,充分借鉴国际行星地质编图的已有技术标准和规范,结合国内数字地质编图的技术标准和规范,建立了中国自己的月球与行星地质编图标准、规范和制图流程,也为最终完成月球大地构造区划提供地貌和构造方面的基础信息。 展开更多
关键词 月球 构造单元 构造要素 撞击坑 构造纲要图
下载PDF
月球着陆器新结构的ADAMS仿真研究 被引量:14
12
作者 王少纯 邓宗全 +2 位作者 杨涤 唐玉国 王笑香 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2007年第9期1392-1394,共3页
为了解决月球着陆器等航天飞行器类产品研制和试验费用十分昂贵的问题,提出并试验了月球着陆器机械结构仿真研究方法.采用ADAMS动力学仿真软件,对月球着陆器3种典型结构进行了动力学建模、优化及在月球重力场下着陆缓冲等仿真研究.以冲... 为了解决月球着陆器等航天飞行器类产品研制和试验费用十分昂贵的问题,提出并试验了月球着陆器机械结构仿真研究方法.采用ADAMS动力学仿真软件,对月球着陆器3种典型结构进行了动力学建模、优化及在月球重力场下着陆缓冲等仿真研究.以冲击隔离系数的大小为具体评价指标,对月球着陆器3种典型结构缓冲性能进行了评价.结果表明斜腿式两级缓冲月球着陆器新结构缓冲效果最好. 展开更多
关键词 月球 着陆器 结构 仿真 缓冲
下载PDF
Applications of same-beam VLBI in the orbit determination of multi-spacecrafts in a lunar sample-return mission 被引量:13
13
作者 GOOSSENS Sander KIKUCHI Fuyuhiko +1 位作者 MATSUMOTO Koji HANADA Hideo 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2010年第6期1153-1161,共9页
Same-beam VLBI means that two spacecrafts with small separation angles that transmit multi-frequency signals specially designed are observed simultaneously through the main beam of receiving antennas. In same-beam VLB... Same-beam VLBI means that two spacecrafts with small separation angles that transmit multi-frequency signals specially designed are observed simultaneously through the main beam of receiving antennas. In same-beam VLBI,the differential phase delay between the two spacecrafts and the two receiving antennas can be obtained within a small error of several picoseconds. As a successful application,the short-arc orbit determination of several hours for Rstar and Vstar,which are two small sub-spacecrafts of SELENE,has been much improved by using the same-beam VLBI data together with the Doppler and range data. The long-arc orbit determination of several days has also been accomplished within an error of about 10 m with the same-beam VLBI data incorporated. These results show the value of the same-beam VLBI for the orbit determination of multi-spacecrafts. This paper introduces the same-beam VLBI and Doppler observations of SELENE and the orbit determination results. In addition,this paper introduces how to use the same-beam VLBI for a lunar sample-return mission,which usually consists of an orbiter,a lander and a return unit. The paper also offers the design for the onboard radio sources in the lunar sample-return mission,and introduces applications of S-band multi-frequency same-beam VLBI in lunar gravity exploration and applications during all stages in the position/orbit determinations such as orbiting,landing,sampling,ascending,and docking. 展开更多
关键词 same-beam VLBI differential phase delay sample-return orbit determination lunar gravity field
原文传递
Primary scientific results of Chang'E-1 lunar mission 被引量:13
14
作者 OUYANG ZiYuan1,2, LI ChunLai1, ZOU YongLiao1, ZHANG HongBo1, Lü Chang1, LIU JianZhong1, LIU JianJun1, ZUO Wei1, SU Yan1, WEN WeiBin1, BIAN Wei1, ZHAO BaoChang3, WANG JianYu4, YANG JianFeng3, CHANG Jin5, WANG HuanYu6, ZHANG XiaoHui7, WANG ShiJin7, WANG Min1, REN Xin1, MU LingLi1, KONG DeQing1, WANG XiaoQian1, WANG Fang1, GENG Liang1, ZHANG ZhouBin1, ZHENG Lei1, ZHU XinYing1, ZHENG YongChun1, LI JunDuo1, ZOU XiaoDuan1, XU Chun1, SHI ShuoBiao1, GAO YiFei1 & GAO GuanNan1 1 National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China 2 Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China +4 位作者 3 Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China 4 Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China 5 Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008, China 6 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China 7 Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190, China 《Science China Earth Sciences》 SCIE EI CAS 2010年第11期1565-1581,共17页
The strategic plan for the development of the unmanned Chinese Lunar Exploration Program is characterized by three distinct stages: "orbiting around", "landing on" and "returning from" th... The strategic plan for the development of the unmanned Chinese Lunar Exploration Program is characterized by three distinct stages: "orbiting around", "landing on" and "returning from" the Moon. The first Chinese lunar probe, Chang'E-1, which was successfully launched on October 24th, 2007 at Xichang Satellite Launch Center, and guided to crash on the Moon on March 1st, 2009, at 52.36°E, 1.50°S, in the north of Mare Fecunditatis, is the first step towards the "orbiting around" stage. The Chang'E-1 mission lasted 495 days, exceeding the expected life-span by about four months. A total of 1.37 TB raw data was received from Chang'E-1. It was then processed into 4 TB scientific data products at various levels. Many scientific results have been obtained by analyzing these data, including especially the "global lunar image from the first Chinese lunar explora- tion mission". All scientific goals of Chang'E-1 have been achieved. It provides much useful materials for further advances of lunar sciences and planetary chemistry. Meanwhile, these results will serve as a firm basis for future Chinese lunar missions. 展开更多
关键词 lunar ORBITER Chang’E-1 SCIENTIFIC data RESULTS
原文传递
In-situ lunar dust deposition amount induced by lander landing in Chang’E-3 mission 被引量:9
15
作者 ZHANG HaiYan WANG Yi +8 位作者 CHEN LiPing ZHANG He LI CunHui ZHUANG JianHong LI DeTian WANG YongJun YANG ShengSheng LI XiongYao WANG WeiDong 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第3期520-527,共8页
China first in-situ lunar dust experiment is performed by a lunar dust detector in Chang’E-3 mission. The existed dust(less than 20 μm in diameter) properties, such as levitation, transportation and adhesion, are cr... China first in-situ lunar dust experiment is performed by a lunar dust detector in Chang’E-3 mission. The existed dust(less than 20 μm in diameter) properties, such as levitation, transportation and adhesion, are critical constraints for future lunar exploration program and even manned lunar exploration. Based on the problems discussed above, the in-situ lunar dust detector is originally designed to characterize dust deposition properties induced by lander landing as a function of environmental temperature, solar incident angle and orbit short circuit current on the northern Mare Imbrium, aiming to study lunar dust deposition properties induced by lander landing in depth. This paper begins with a brief of introduction of Chang’E-3 lunar dust detector design,followed by a series of experimental analysis of this instrument under different influencing factors, and concludes with lunar dust mass density deposition amount observed on the first lunar day is about 0.83 mg/cm^2, which is less than that observed in Apollo 11 mission because the landing site of Chang’E-3 has the youngest mare basalts comparing with previous Apollo and lunar landing sites. The young geologic environment is less weathered and thus it has thinner layer of lunar dust than Apollo missions’;hence, the amount of kicked-up lunar dust in Chang’E-3 mission is less than that in Apollo 11 mission. 展开更多
关键词 in-situ lunar dust experiment Chang'E-3 mission unnatural mechanisms lunar dust deposition amount
原文传递
星表移动探测机器人研究现状综述 被引量:13
16
作者 张元勋 黄靖 韩亮亮 《航空学报》 EI CAS CSCD 北大核心 2021年第1期55-72,共18页
星表移动探测机器人是多学科、高新技术的结晶,用于非结构化环境中的星球表面探测,能有效减轻人类工作强度、保护人身安全以及代替人类完成恶劣环境下的科研探测工作,有着巨大的经济和社会效益。本文对已发射的探测器进行了统计,系统梳... 星表移动探测机器人是多学科、高新技术的结晶,用于非结构化环境中的星球表面探测,能有效减轻人类工作强度、保护人身安全以及代替人类完成恶劣环境下的科研探测工作,有着巨大的经济和社会效益。本文对已发射的探测器进行了统计,系统梳理了成功着陆月球、火星的探测机器人的技术参数、结构与机构组成等,综合对比了各国在星表移动探测机器人研制方面的技术状态。结合国内外的研究现状和成果,重点针对星表移动探测机器人移动系统的研究进行了梳理,将星表移动探测机器人从运动形式上划分为轮式、腿式、履带式及其他类型4种形式,对每类机器人的研究进展、技术参数、结构与机构形式、运动形态等进行了系统回顾和详细分析。结合星表移动探测机器人面临的探测任务及发展方向,对星表移动探测机器人未来发展趋势进行了展望。 展开更多
关键词 星表移动探测机器人 月球 火星 轮式机器人 移动分系统
原文传递
基于数学形态学的月海圆形撞击坑自动识别方法 被引量:13
17
作者 袁悦锋 朱培民 +3 位作者 赵娜 金丹 张金保 周强 《中国科学:物理学、力学、天文学》 CSCD 北大核心 2013年第3期324-332,共9页
撞击坑是月球表面最为常见的地质单元,是研究月球地质演化历史的重要对象,也是月球地质定年的基本依据,因此撞击坑识别具有重要意义.本文根据嫦娥一号采集的月球CCD图像,基于数学形态学方法对撞击坑进行自动识别提取研究.在CCD图像中,... 撞击坑是月球表面最为常见的地质单元,是研究月球地质演化历史的重要对象,也是月球地质定年的基本依据,因此撞击坑识别具有重要意义.本文根据嫦娥一号采集的月球CCD图像,基于数学形态学方法对撞击坑进行自动识别提取研究.在CCD图像中,撞击坑边缘的灰度变化明显,梯度较大,由此可以计算获取撞击坑的边缘形态;一般情况下,依据图像灰度梯度突变,通过边缘检测得到的撞击坑边缘比较粗糙、不连续,而且有断口和小洞.根据数学形态学的基本思想——用具有一定形态的结构元素去量度和提取图像中的对应形状,对识别出来的边缘作进一步处理,可得到较光滑、连续的撞击坑边缘弧,从而能方便地拟合出撞击坑边缘,并获得撞击坑的直径与位置.用数学形态学进行撞击坑识别与提取的主要步骤是:首先对CCD影像计算灰度的梯度,得到梯度图像,然后进行二值化,再使用数学形态学分离出边缘,最后用圆形对撞击坑进行拟合并计算出撞击坑的位置和直径.本文分别对月海和月陆地区进行撞击坑识别实验,结果表明,我们设计的算法能够识别的最小撞击坑直径为10个像素.其中月海区域撞击坑识别准确可靠;而月陆区域岩性差异大、地形起伏,造成CCD图像背景变化较大,其识别效果相对差一些,有待进一步改善. 展开更多
关键词 撞击坑 自动识别 边缘提取 月球
原文传递
Point return orbit design and characteristics analysis for manned lunar mission 被引量:13
18
作者 SHEN HongXin ZHOU JianPing +1 位作者 PENG QiBo LI HaiYang 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第9期2561-2569,共9页
Point return orbit(PRO) of manned lunar mission is constrained by both lunar parking orbit and reentry corridor associated with reentry position.Besides,the fuel consumption and flight time should be economy.The patch... Point return orbit(PRO) of manned lunar mission is constrained by both lunar parking orbit and reentry corridor associated with reentry position.Besides,the fuel consumption and flight time should be economy.The patched conic equations which are adaptive to PRO are derived first,the PRO is modeled with fuel and time constraints based on the design variables of orbit parameters with clear physical meaning.After that,by combining analytical method with numerical method,a serial orbit design strategy from initial value design to precision solution is proposed.Simulation example indicates that the method has excellent convergence performance and precision.According to a great deal of simulation results by the method,the PRO characteristics such as Moon centered orbit parameters,Earth centered orbit parameters,transfer velocity change,etc.are analyzed,which can supply references to the manned lunar mission orbit scheme. 展开更多
关键词 manned lunar mission point return orbit orbit design orbit characteristics optimization
原文传递
Simulations on the influence of lunar surface temperature profiles on CE-1 lunar microwave sounder brightness temperature 被引量:8
19
作者 LI Yun WANG ZhenZhan JIANG JingShan 《Science China Earth Sciences》 SCIE EI CAS 2010年第9期1379-1391,共13页
Surface temperature profile is an important parameter in lunar microwave remote sensing. Based on the analysis of physical properties of the lunar samples brought back by the Apollo and Luna missions, we modeled tempo... Surface temperature profile is an important parameter in lunar microwave remote sensing. Based on the analysis of physical properties of the lunar samples brought back by the Apollo and Luna missions, we modeled temporal and spatial variation of lunar surface temperature with the heat conduction equation, and produced temperature distribution in top 6.0 m of lunar regolith of the whole Moon surface. Our simulation results show that the profile of lunar surface temperature varies mainly within the top 20 cm, except at the lunar polar regions where the changes can reach to about 1.0 m depth. The temperature is stable beyond that depth. The variations of lunar surface temperature lead to main changes in brightness temperature (TB) at different channels of the lunar microwave sounder (CELMS) on Chang'E-1 (CE-1). The results of this paper show that the temperature profile influenced CELMS TB, which provides strong validation on the CELMS data, and lays a solid basis for future interpretation and utilization of the CELMS data. 展开更多
关键词 CE-1 lunar MICROWAVE Sounder (CELMS) lunar SURFACE TEMPERATURE lunar SURFACE TEMPERATURE profile heat conduction equation simulation of BRIGHTNESS TEMPERATURE
原文传递
月球主要构造特征:嫦娥一号月球影像初步研究 被引量:12
20
作者 王杰 曾佐勋 +1 位作者 岳宗玉 胡烨 《空间科学学报》 CAS CSCD 北大核心 2011年第4期482-491,共10页
月球在31亿年前已基本停止地质活动,从而保留了其形成初期的信息.这些信息对于认识月球、地球乃至太阳系的形成演化具有重要意义.在已有研究成果的基础上,结合嫦娥一号探月卫星CCD影像数据,从月海穹窿、撞击坑、月岭、断裂、月坑链、月... 月球在31亿年前已基本停止地质活动,从而保留了其形成初期的信息.这些信息对于认识月球、地球乃至太阳系的形成演化具有重要意义.在已有研究成果的基础上,结合嫦娥一号探月卫星CCD影像数据,从月海穹窿、撞击坑、月岭、断裂、月坑链、月溪及月谷等方面介绍了月球主要构造形式的地质特征、形貌特征及遥感影像特征,对其成因以及所隐含的地质意义进行了分析.结果表明,嫦娥一号CCD影像信息丰富,影像清晰,利用其CCD影像数据进一步研究月球的构造现象是可行的. 展开更多
关键词 嫦娥一号 月球 构造特征 CCD影像
下载PDF
上一页 1 2 157 下一页 到第
使用帮助 返回顶部