The Unified S-Band (USB) ranging/Doppler system and the Very Long Baseline Interferometry (VLBI) system as the ground tracking system jointly supported the lunar orbit capture of both Chang'E-2 (CE-2) and Chang...The Unified S-Band (USB) ranging/Doppler system and the Very Long Baseline Interferometry (VLBI) system as the ground tracking system jointly supported the lunar orbit capture of both Chang'E-2 (CE-2) and Chang'E-1 (CE-1) missions. The tracking system is also responsible for providing precise orbits for scientific data processing. New VLBI equipment and data processing strategies have been proposed based on CE-1 experiences and implemented for CE-2. In this work the role VLBI tracking data played was reassessed through precision orbit determination (POD) experiments for CE-2. Significant improve- ment in terms of both VLBI delay and delay rate data accuracy was achieved with the noise level of X-band band-width syn- thesis delay data reaching 0.2-0.3 ns. Short-arc orbit determination experiments showed that the combination of only 15 min's range and VLBI data was able to improve the accuracy of 3 h's orbit using range data only by a 1-1.5 order of magnitude, confirming a similar conclusion for CE-1. Moreover, because of the accuracy improvement, VLBI data was able to contribute to CE-2's long-arc POD especially in the along-track and orbital normal directions. Orbital accuracy was assessed through the orbital overlapping analysis (2 h arc overlapping for 18 h POD arc). Compared with about 100 m position error of CE-l's 200 kin x 200 km lunar orbit, for CE-2's 100 km x 100 km lunar orbit, the position errors were better than 31 and 6 m in the radial direction, and for CE-2's 15 km^100 km orbit, the position errors were better than 45 and 12 m in the radial direction. In addi- tion, in trying to analyze the Delta Differential One-Way Ranging (ADOR) experiments data we concluded that the accuracy of ADOR delay was dramatically improved with the noise level better than 0.1 ns and systematic errors better calibrated, and the Short-arc POD tests with ADOR data showed excellent results. Although unable to support the development of an independent lunar gravity model, the track展开更多
The global lunar image of the first phase of Chinese Lunar Exploration Program is the first image that covered all over the surface of the Moon. It will serve as a critical foundation for succeeding exploration and sc...The global lunar image of the first phase of Chinese Lunar Exploration Program is the first image that covered all over the surface of the Moon. It will serve as a critical foundation for succeeding exploration and scientific research. In this paper, the acquisition, characteristics, and data quality of Chang'E-1 CCD image data are described in detail. Also described are the methodology and procedure of data processing. According to rule of planetary cartography, the image data have been processed, geometrically corrected, and then mosaicked and merged in a scale of 1:2.5 million. The results of data processing and charting show that the image data of Chang'E-1 CCD and their geometric precision meet the demand of charting a map in the scale of 1:2.5 million. The relative geometric positioning precision of the global image is better than 240 m, and the absolute geometric positioning precision is slightly better than that of the ULCN2005 and Clementine lunar basemap (V2.0). The plane positioning precision is approximately 100-1500 m. This global image proves to be the best global image of the Moon so far in terms of space coverage, image quality, and positioning precision.展开更多
More than 3 million range measurements from the Chang’E-1 Laser Altimeter have been used to produce a global topographic model of the Moon with improved accuracy. Our topographic model, a 360th degree and order spher...More than 3 million range measurements from the Chang’E-1 Laser Altimeter have been used to produce a global topographic model of the Moon with improved accuracy. Our topographic model, a 360th degree and order spherical harmonic expansion of the lunar radii, is designated as Chang’E-1 Lunar Topography Model s01 (CLTM-s01). This topographic field, referenced to a mean radius of 1738 km, has an absolute vertical accuracy of approximately 31 m and a spatial resolution of 0.25° (~7.5 km). This new lunar topographic model has greatly improved previous models in spatial coverage, accuracy and spatial resolution, and also shows the polar regions with the altimeter results for the first time. From CLTM-s01, the mean, equatorial, and polar radii of the Moon are 1737103, 1737646, and 1735843 m, respectively. In the lunar-fixed coordinate system, this model shows a COM/COF offset to be (?1.777, ?0.730, 0.237) km along the x, y, and z directions, respectively. All the basic lunar shape parameters derived from CLTM-s01 are in agreement with the results of Clementine GLTM2, but CLTM-s01 offers higher accuracy and reliability due to its better global samplings.展开更多
A circumlunar free return orbit design model that satisfies manned lunar mission constraints is established. By combining analytical method with numerical method,a serial orbit design strategy from initial value desig...A circumlunar free return orbit design model that satisfies manned lunar mission constraints is established. By combining analytical method with numerical method,a serial orbit design strategy from initial value design to precision solution is proposed. A simulation example is given,and the conclusion indicates that the method has excellent convergence performance and precision. According to a great deal of simulation results solved by the method,the free return orbit characters such as accessible moon orbit parameters,return orbit parameters,transfer delta velocity,etc. are analyzed,which can supply references to constitute manned lunar mission orbit scheme.展开更多
The Laser AltiMeter (LAM), as one of the main payloads of Chang'E-1 probe, is used to measure the topography of the lunar surface. It performed the first measurement at 02:22 on November 28th, 2007. Up to December...The Laser AltiMeter (LAM), as one of the main payloads of Chang'E-1 probe, is used to measure the topography of the lunar surface. It performed the first measurement at 02:22 on November 28th, 2007. Up to December 4th 2008, the total number of measurements was approximately 9.12 million, covering the whole surface of the Moon. Using the LAM data, we constructed a global lunar Digtal Elevation Model (DEM) with 3 km spatial resolution. The model shows pronounced morphological characteristics, legible and vivid details of the lunar surface. The plane positioning accuracy of the DEM is 445 m (1σ), and the vertical accuracy is 60 m (1σ). From this DEM model, we measured the full range of the altitude difference on the lunar sur-face, which is about 19.807 km. The highest point is 10.629 km high, on a peak between crater Korolev and crater Dirichlet-Jackson at (158.656°W, 5.441°N) and the lowest point is -9.178 km in height, inside crater Antoniadi (172.413°W, 70.368°S) in the South Pole-Aitken Basin. By comparison, the DEM model of Chang'E-1 is better than the USA ULCN2005 in accuracy and resolution and is probably identical to the DEM of Japan SELENE, but the DEM of Chang'E-1 reveals a new lowest point, clearly lower than that of SELENE.展开更多
Multi-frequency same-beam VLBI means that two explorers with a small separation angle are simultaneously observed with the main beam of receiving antennas. In the same-beam VLBI, the differential phase delay between t...Multi-frequency same-beam VLBI means that two explorers with a small separation angle are simultaneously observed with the main beam of receiving antennas. In the same-beam VLBI, the differential phase delay between two explorers and two receiving telescopes can be obtained with a small error of several picoseconds. The differential phase delay, as the observable of the same-beam VLBI, gives the separation angular information of the two explorers in the celestial sphere. The two-dimensional relative position on the plane-of-sky can thus be precisely determined with an error of less than 1 m for a distance of 3.8×105 km far away from the earth, by using the differential phase delay obtained with the four Chinese VLBI stations. The relative position of a lunar rover on the lunar surface can be determined with an error of 10 m by using the differential phase delay data and the range data for the lander when the lunar topography near the rover and the lander can be determined with an error of 10 m.展开更多
To improve our understanding of the formation and evolution of the Moon, one of the payloads onboard the Chang'e-3 (CE-3) rover is Lunar Penetrating Radar (LPR). This investigation is the first attempt to explore...To improve our understanding of the formation and evolution of the Moon, one of the payloads onboard the Chang'e-3 (CE-3) rover is Lunar Penetrating Radar (LPR). This investigation is the first attempt to explore the lunar subsurface structure by using ground penetrating radar with high resolution. We have probed the subsur- face to a depth of several hundred meters using LPR. In-orbit testing, data processing and the preliminary results are presented. These observations have revealed the con- figuration of regolith where the thickness of regolith varies from about 4 m to 6 m. In addition, one layer of lunar rock, which is about 330 m deep and might have been accumulated during the depositional hiatus of mare basalts, was detected.展开更多
Along with the progress of sciences and technologies, a lot of explorations are taken in many countries or organizations in succession. Lunar, the natural satellite of the earth, become a focus of the space discovery ...Along with the progress of sciences and technologies, a lot of explorations are taken in many countries or organizations in succession. Lunar, the natural satellite of the earth, become a focus of the space discovery again recently because of its abundant resource and high value in use. Lunar exploration is also one of the most important projects in China. A primary objective of the probe in lunar is to soft-land a manned spacecraft on the lunar surface. The soft-landing system is the key composition of the lunar lander. In the overall design of lunar lander, the analysis of touchdown dynamics during landing stage is an important work. The rigid-flexible coupling dynamics of a system with flexible cantilevers attached to the main lander is analyzed. The equations are derived from the subsystem method. Results show that the deformations of cantilevers have considerable effect on the overloading of the lunar lander system.展开更多
In the Chinese lunar exploration project,the Chang'E-1 (CE-1) satellite was jointly monitored by the United S-band range and Doppler and the VLBI technique. A real-time reduction of the tracking data is realized t...In the Chinese lunar exploration project,the Chang'E-1 (CE-1) satellite was jointly monitored by the United S-band range and Doppler and the VLBI technique. A real-time reduction of the tracking data is realized to deduce the time series of the instantaneous state vectors (ISV) (position and velocity vec-tors) of the CE-1 satellite,and is applied to the orbital monitoring of pivotal arcs. This paper introduces this real-time data reduction method and its application to the orbital monitoring of pivotal arcs of the CE-1 satellite in order to serve as a source of criticism and reference.展开更多
Lunar Penetrating Radar (LPR) is one of the important scientific instru- ments onboard the Chang'e-3 spacecraft. Its scientific goals are the mapping of lunar regolith and detection of subsurface geologic structure...Lunar Penetrating Radar (LPR) is one of the important scientific instru- ments onboard the Chang'e-3 spacecraft. Its scientific goals are the mapping of lunar regolith and detection of subsurface geologic structures. This paper describes the goals of the mission, as well as the basic principles, design, composition and achievements of the LPR. Finally, experiments on a glacier and the lunar surface are analyzed.展开更多
Same-beam VLBI means that two spacecrafts with small separation angles that transmit multi-frequency signals specially designed are observed simultaneously through the main beam of receiving antennas. In same-beam VLB...Same-beam VLBI means that two spacecrafts with small separation angles that transmit multi-frequency signals specially designed are observed simultaneously through the main beam of receiving antennas. In same-beam VLBI,the differential phase delay between the two spacecrafts and the two receiving antennas can be obtained within a small error of several picoseconds. As a successful application,the short-arc orbit determination of several hours for Rstar and Vstar,which are two small sub-spacecrafts of SELENE,has been much improved by using the same-beam VLBI data together with the Doppler and range data. The long-arc orbit determination of several days has also been accomplished within an error of about 10 m with the same-beam VLBI data incorporated. These results show the value of the same-beam VLBI for the orbit determination of multi-spacecrafts. This paper introduces the same-beam VLBI and Doppler observations of SELENE and the orbit determination results. In addition,this paper introduces how to use the same-beam VLBI for a lunar sample-return mission,which usually consists of an orbiter,a lander and a return unit. The paper also offers the design for the onboard radio sources in the lunar sample-return mission,and introduces applications of S-band multi-frequency same-beam VLBI in lunar gravity exploration and applications during all stages in the position/orbit determinations such as orbiting,landing,sampling,ascending,and docking.展开更多
The strategic plan for the development of the unmanned Chinese Lunar Exploration Program is characterized by three distinct stages: "orbiting around", "landing on" and "returning from" th...The strategic plan for the development of the unmanned Chinese Lunar Exploration Program is characterized by three distinct stages: "orbiting around", "landing on" and "returning from" the Moon. The first Chinese lunar probe, Chang'E-1, which was successfully launched on October 24th, 2007 at Xichang Satellite Launch Center, and guided to crash on the Moon on March 1st, 2009, at 52.36°E, 1.50°S, in the north of Mare Fecunditatis, is the first step towards the "orbiting around" stage. The Chang'E-1 mission lasted 495 days, exceeding the expected life-span by about four months. A total of 1.37 TB raw data was received from Chang'E-1. It was then processed into 4 TB scientific data products at various levels. Many scientific results have been obtained by analyzing these data, including especially the "global lunar image from the first Chinese lunar explora- tion mission". All scientific goals of Chang'E-1 have been achieved. It provides much useful materials for further advances of lunar sciences and planetary chemistry. Meanwhile, these results will serve as a firm basis for future Chinese lunar missions.展开更多
China first in-situ lunar dust experiment is performed by a lunar dust detector in Chang’E-3 mission. The existed dust(less than 20 μm in diameter) properties, such as levitation, transportation and adhesion, are cr...China first in-situ lunar dust experiment is performed by a lunar dust detector in Chang’E-3 mission. The existed dust(less than 20 μm in diameter) properties, such as levitation, transportation and adhesion, are critical constraints for future lunar exploration program and even manned lunar exploration. Based on the problems discussed above, the in-situ lunar dust detector is originally designed to characterize dust deposition properties induced by lander landing as a function of environmental temperature, solar incident angle and orbit short circuit current on the northern Mare Imbrium, aiming to study lunar dust deposition properties induced by lander landing in depth. This paper begins with a brief of introduction of Chang’E-3 lunar dust detector design,followed by a series of experimental analysis of this instrument under different influencing factors, and concludes with lunar dust mass density deposition amount observed on the first lunar day is about 0.83 mg/cm^2, which is less than that observed in Apollo 11 mission because the landing site of Chang’E-3 has the youngest mare basalts comparing with previous Apollo and lunar landing sites. The young geologic environment is less weathered and thus it has thinner layer of lunar dust than Apollo missions’;hence, the amount of kicked-up lunar dust in Chang’E-3 mission is less than that in Apollo 11 mission.展开更多
Point return orbit(PRO) of manned lunar mission is constrained by both lunar parking orbit and reentry corridor associated with reentry position.Besides,the fuel consumption and flight time should be economy.The patch...Point return orbit(PRO) of manned lunar mission is constrained by both lunar parking orbit and reentry corridor associated with reentry position.Besides,the fuel consumption and flight time should be economy.The patched conic equations which are adaptive to PRO are derived first,the PRO is modeled with fuel and time constraints based on the design variables of orbit parameters with clear physical meaning.After that,by combining analytical method with numerical method,a serial orbit design strategy from initial value design to precision solution is proposed.Simulation example indicates that the method has excellent convergence performance and precision.According to a great deal of simulation results by the method,the PRO characteristics such as Moon centered orbit parameters,Earth centered orbit parameters,transfer velocity change,etc.are analyzed,which can supply references to the manned lunar mission orbit scheme.展开更多
Surface temperature profile is an important parameter in lunar microwave remote sensing. Based on the analysis of physical properties of the lunar samples brought back by the Apollo and Luna missions, we modeled tempo...Surface temperature profile is an important parameter in lunar microwave remote sensing. Based on the analysis of physical properties of the lunar samples brought back by the Apollo and Luna missions, we modeled temporal and spatial variation of lunar surface temperature with the heat conduction equation, and produced temperature distribution in top 6.0 m of lunar regolith of the whole Moon surface. Our simulation results show that the profile of lunar surface temperature varies mainly within the top 20 cm, except at the lunar polar regions where the changes can reach to about 1.0 m depth. The temperature is stable beyond that depth. The variations of lunar surface temperature lead to main changes in brightness temperature (TB) at different channels of the lunar microwave sounder (CELMS) on Chang'E-1 (CE-1). The results of this paper show that the temperature profile influenced CELMS TB, which provides strong validation on the CELMS data, and lays a solid basis for future interpretation and utilization of the CELMS data.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 10703011 and11073047)the Science and Technology Commission of Shanghai (GrantNo. 06DZ22101)the National High Technology Research and Development Program of China (Grant No. 2010AA122202)
文摘The Unified S-Band (USB) ranging/Doppler system and the Very Long Baseline Interferometry (VLBI) system as the ground tracking system jointly supported the lunar orbit capture of both Chang'E-2 (CE-2) and Chang'E-1 (CE-1) missions. The tracking system is also responsible for providing precise orbits for scientific data processing. New VLBI equipment and data processing strategies have been proposed based on CE-1 experiences and implemented for CE-2. In this work the role VLBI tracking data played was reassessed through precision orbit determination (POD) experiments for CE-2. Significant improve- ment in terms of both VLBI delay and delay rate data accuracy was achieved with the noise level of X-band band-width syn- thesis delay data reaching 0.2-0.3 ns. Short-arc orbit determination experiments showed that the combination of only 15 min's range and VLBI data was able to improve the accuracy of 3 h's orbit using range data only by a 1-1.5 order of magnitude, confirming a similar conclusion for CE-1. Moreover, because of the accuracy improvement, VLBI data was able to contribute to CE-2's long-arc POD especially in the along-track and orbital normal directions. Orbital accuracy was assessed through the orbital overlapping analysis (2 h arc overlapping for 18 h POD arc). Compared with about 100 m position error of CE-l's 200 kin x 200 km lunar orbit, for CE-2's 100 km x 100 km lunar orbit, the position errors were better than 31 and 6 m in the radial direction, and for CE-2's 15 km^100 km orbit, the position errors were better than 45 and 12 m in the radial direction. In addi- tion, in trying to analyze the Delta Differential One-Way Ranging (ADOR) experiments data we concluded that the accuracy of ADOR delay was dramatically improved with the noise level better than 0.1 ns and systematic errors better calibrated, and the Short-arc POD tests with ADOR data showed excellent results. Although unable to support the development of an independent lunar gravity model, the track
文摘The global lunar image of the first phase of Chinese Lunar Exploration Program is the first image that covered all over the surface of the Moon. It will serve as a critical foundation for succeeding exploration and scientific research. In this paper, the acquisition, characteristics, and data quality of Chang'E-1 CCD image data are described in detail. Also described are the methodology and procedure of data processing. According to rule of planetary cartography, the image data have been processed, geometrically corrected, and then mosaicked and merged in a scale of 1:2.5 million. The results of data processing and charting show that the image data of Chang'E-1 CCD and their geometric precision meet the demand of charting a map in the scale of 1:2.5 million. The relative geometric positioning precision of the global image is better than 240 m, and the absolute geometric positioning precision is slightly better than that of the ULCN2005 and Clementine lunar basemap (V2.0). The plane positioning precision is approximately 100-1500 m. This global image proves to be the best global image of the Moon so far in terms of space coverage, image quality, and positioning precision.
基金Supported by the National Natural Science Foundation of China (Grant Nos 2008AA12A209 and 2008AA12A210)supported by Chang'E-1 monitoring and control systems, scientific applications system and the satellite systemssupported by the knowledge innovation project the "Hun-dred Excellent Project" of Chinese Academy of Sciences
文摘More than 3 million range measurements from the Chang’E-1 Laser Altimeter have been used to produce a global topographic model of the Moon with improved accuracy. Our topographic model, a 360th degree and order spherical harmonic expansion of the lunar radii, is designated as Chang’E-1 Lunar Topography Model s01 (CLTM-s01). This topographic field, referenced to a mean radius of 1738 km, has an absolute vertical accuracy of approximately 31 m and a spatial resolution of 0.25° (~7.5 km). This new lunar topographic model has greatly improved previous models in spatial coverage, accuracy and spatial resolution, and also shows the polar regions with the altimeter results for the first time. From CLTM-s01, the mean, equatorial, and polar radii of the Moon are 1737103, 1737646, and 1735843 m, respectively. In the lunar-fixed coordinate system, this model shows a COM/COF offset to be (?1.777, ?0.730, 0.237) km along the x, y, and z directions, respectively. All the basic lunar shape parameters derived from CLTM-s01 are in agreement with the results of Clementine GLTM2, but CLTM-s01 offers higher accuracy and reliability due to its better global samplings.
基金supported by the National Natural Science Foundation of China (Grant No.10902121)
文摘A circumlunar free return orbit design model that satisfies manned lunar mission constraints is established. By combining analytical method with numerical method,a serial orbit design strategy from initial value design to precision solution is proposed. A simulation example is given,and the conclusion indicates that the method has excellent convergence performance and precision. According to a great deal of simulation results solved by the method,the free return orbit characters such as accessible moon orbit parameters,return orbit parameters,transfer delta velocity,etc. are analyzed,which can supply references to constitute manned lunar mission orbit scheme.
文摘The Laser AltiMeter (LAM), as one of the main payloads of Chang'E-1 probe, is used to measure the topography of the lunar surface. It performed the first measurement at 02:22 on November 28th, 2007. Up to December 4th 2008, the total number of measurements was approximately 9.12 million, covering the whole surface of the Moon. Using the LAM data, we constructed a global lunar Digtal Elevation Model (DEM) with 3 km spatial resolution. The model shows pronounced morphological characteristics, legible and vivid details of the lunar surface. The plane positioning accuracy of the DEM is 445 m (1σ), and the vertical accuracy is 60 m (1σ). From this DEM model, we measured the full range of the altitude difference on the lunar sur-face, which is about 19.807 km. The highest point is 10.629 km high, on a peak between crater Korolev and crater Dirichlet-Jackson at (158.656°W, 5.441°N) and the lowest point is -9.178 km in height, inside crater Antoniadi (172.413°W, 70.368°S) in the South Pole-Aitken Basin. By comparison, the DEM model of Chang'E-1 is better than the USA ULCN2005 in accuracy and resolution and is probably identical to the DEM of Japan SELENE, but the DEM of Chang'E-1 reveals a new lowest point, clearly lower than that of SELENE.
基金supported by the ‘100 Talents Project’ of Chinese Academy of Sciences, China
文摘Multi-frequency same-beam VLBI means that two explorers with a small separation angle are simultaneously observed with the main beam of receiving antennas. In the same-beam VLBI, the differential phase delay between two explorers and two receiving telescopes can be obtained with a small error of several picoseconds. The differential phase delay, as the observable of the same-beam VLBI, gives the separation angular information of the two explorers in the celestial sphere. The two-dimensional relative position on the plane-of-sky can thus be precisely determined with an error of less than 1 m for a distance of 3.8×105 km far away from the earth, by using the differential phase delay obtained with the four Chinese VLBI stations. The relative position of a lunar rover on the lunar surface can be determined with an error of 10 m by using the differential phase delay data and the range data for the lander when the lunar topography near the rover and the lander can be determined with an error of 10 m.
基金Supported by the National Natural Science Foundation of China
文摘To improve our understanding of the formation and evolution of the Moon, one of the payloads onboard the Chang'e-3 (CE-3) rover is Lunar Penetrating Radar (LPR). This investigation is the first attempt to explore the lunar subsurface structure by using ground penetrating radar with high resolution. We have probed the subsur- face to a depth of several hundred meters using LPR. In-orbit testing, data processing and the preliminary results are presented. These observations have revealed the con- figuration of regolith where the thickness of regolith varies from about 4 m to 6 m. In addition, one layer of lunar rock, which is about 330 m deep and might have been accumulated during the depositional hiatus of mare basalts, was detected.
基金HI-tech Research and Development Program of China
文摘Along with the progress of sciences and technologies, a lot of explorations are taken in many countries or organizations in succession. Lunar, the natural satellite of the earth, become a focus of the space discovery again recently because of its abundant resource and high value in use. Lunar exploration is also one of the most important projects in China. A primary objective of the probe in lunar is to soft-land a manned spacecraft on the lunar surface. The soft-landing system is the key composition of the lunar lander. In the overall design of lunar lander, the analysis of touchdown dynamics during landing stage is an important work. The rigid-flexible coupling dynamics of a system with flexible cantilevers attached to the main lander is analyzed. The equations are derived from the subsystem method. Results show that the deformations of cantilevers have considerable effect on the overloading of the lunar lander system.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 10973031, 10778635 and 10973030)the Chinese Lunar Exploration Project (Chang’E-1), STC of Shanghai Municipality (Grant No. 06DZ22101)+1 种基金the CAS Key Research Program (Grant No. KJCX2-YW-T13-2)the National High Technology Research and Development Program of China (Grant Nos. 2008AA12A209 and 2008AA12A210)
文摘In the Chinese lunar exploration project,the Chang'E-1 (CE-1) satellite was jointly monitored by the United S-band range and Doppler and the VLBI technique. A real-time reduction of the tracking data is realized to deduce the time series of the instantaneous state vectors (ISV) (position and velocity vec-tors) of the CE-1 satellite,and is applied to the orbital monitoring of pivotal arcs. This paper introduces this real-time data reduction method and its application to the orbital monitoring of pivotal arcs of the CE-1 satellite in order to serve as a source of criticism and reference.
基金funded by the second phase of the Chinese Lunar Exploration Program
文摘Lunar Penetrating Radar (LPR) is one of the important scientific instru- ments onboard the Chang'e-3 spacecraft. Its scientific goals are the mapping of lunar regolith and detection of subsurface geologic structures. This paper describes the goals of the mission, as well as the basic principles, design, composition and achievements of the LPR. Finally, experiments on a glacier and the lunar surface are analyzed.
文摘Same-beam VLBI means that two spacecrafts with small separation angles that transmit multi-frequency signals specially designed are observed simultaneously through the main beam of receiving antennas. In same-beam VLBI,the differential phase delay between the two spacecrafts and the two receiving antennas can be obtained within a small error of several picoseconds. As a successful application,the short-arc orbit determination of several hours for Rstar and Vstar,which are two small sub-spacecrafts of SELENE,has been much improved by using the same-beam VLBI data together with the Doppler and range data. The long-arc orbit determination of several days has also been accomplished within an error of about 10 m with the same-beam VLBI data incorporated. These results show the value of the same-beam VLBI for the orbit determination of multi-spacecrafts. This paper introduces the same-beam VLBI and Doppler observations of SELENE and the orbit determination results. In addition,this paper introduces how to use the same-beam VLBI for a lunar sample-return mission,which usually consists of an orbiter,a lander and a return unit. The paper also offers the design for the onboard radio sources in the lunar sample-return mission,and introduces applications of S-band multi-frequency same-beam VLBI in lunar gravity exploration and applications during all stages in the position/orbit determinations such as orbiting,landing,sampling,ascending,and docking.
文摘The strategic plan for the development of the unmanned Chinese Lunar Exploration Program is characterized by three distinct stages: "orbiting around", "landing on" and "returning from" the Moon. The first Chinese lunar probe, Chang'E-1, which was successfully launched on October 24th, 2007 at Xichang Satellite Launch Center, and guided to crash on the Moon on March 1st, 2009, at 52.36°E, 1.50°S, in the north of Mare Fecunditatis, is the first step towards the "orbiting around" stage. The Chang'E-1 mission lasted 495 days, exceeding the expected life-span by about four months. A total of 1.37 TB raw data was received from Chang'E-1. It was then processed into 4 TB scientific data products at various levels. Many scientific results have been obtained by analyzing these data, including especially the "global lunar image from the first Chinese lunar explora- tion mission". All scientific goals of Chang'E-1 have been achieved. It provides much useful materials for further advances of lunar sciences and planetary chemistry. Meanwhile, these results will serve as a firm basis for future Chinese lunar missions.
基金supported by the Beijing Institute of Spacecraft System Engineeringthe National Natural Science Foundation of China(Grant No.11605080)the State Key Laboratory of Environmental Geochemistry for providing the simulant lunar dust
文摘China first in-situ lunar dust experiment is performed by a lunar dust detector in Chang’E-3 mission. The existed dust(less than 20 μm in diameter) properties, such as levitation, transportation and adhesion, are critical constraints for future lunar exploration program and even manned lunar exploration. Based on the problems discussed above, the in-situ lunar dust detector is originally designed to characterize dust deposition properties induced by lander landing as a function of environmental temperature, solar incident angle and orbit short circuit current on the northern Mare Imbrium, aiming to study lunar dust deposition properties induced by lander landing in depth. This paper begins with a brief of introduction of Chang’E-3 lunar dust detector design,followed by a series of experimental analysis of this instrument under different influencing factors, and concludes with lunar dust mass density deposition amount observed on the first lunar day is about 0.83 mg/cm^2, which is less than that observed in Apollo 11 mission because the landing site of Chang’E-3 has the youngest mare basalts comparing with previous Apollo and lunar landing sites. The young geologic environment is less weathered and thus it has thinner layer of lunar dust than Apollo missions’;hence, the amount of kicked-up lunar dust in Chang’E-3 mission is less than that in Apollo 11 mission.
基金supported by the Open Research Foundation of Science and Technology on Aerospace Flight Dynamics Laboratory (Grant No.2012afdl005)
文摘Point return orbit(PRO) of manned lunar mission is constrained by both lunar parking orbit and reentry corridor associated with reentry position.Besides,the fuel consumption and flight time should be economy.The patched conic equations which are adaptive to PRO are derived first,the PRO is modeled with fuel and time constraints based on the design variables of orbit parameters with clear physical meaning.After that,by combining analytical method with numerical method,a serial orbit design strategy from initial value design to precision solution is proposed.Simulation example indicates that the method has excellent convergence performance and precision.According to a great deal of simulation results by the method,the PRO characteristics such as Moon centered orbit parameters,Earth centered orbit parameters,transfer velocity change,etc.are analyzed,which can supply references to the manned lunar mission orbit scheme.
基金supported by "CE-1" Lunar Microwave Sounder Program
文摘Surface temperature profile is an important parameter in lunar microwave remote sensing. Based on the analysis of physical properties of the lunar samples brought back by the Apollo and Luna missions, we modeled temporal and spatial variation of lunar surface temperature with the heat conduction equation, and produced temperature distribution in top 6.0 m of lunar regolith of the whole Moon surface. Our simulation results show that the profile of lunar surface temperature varies mainly within the top 20 cm, except at the lunar polar regions where the changes can reach to about 1.0 m depth. The temperature is stable beyond that depth. The variations of lunar surface temperature lead to main changes in brightness temperature (TB) at different channels of the lunar microwave sounder (CELMS) on Chang'E-1 (CE-1). The results of this paper show that the temperature profile influenced CELMS TB, which provides strong validation on the CELMS data, and lays a solid basis for future interpretation and utilization of the CELMS data.