Point-of-care testing(POCT)technology is highly desirable for clinical diagnosis,healthcare monitoring,food safety inspection,and environment surveillance,because it enables rapid detection anywhere,anytime,and by any...Point-of-care testing(POCT)technology is highly desirable for clinical diagnosis,healthcare monitoring,food safety inspection,and environment surveillance,because it enables rapid detection anywhere,anytime,and by anyone.Electrochemiluminescence(ECL)has been widely used in chemo-/bio analysis due to its advantages such as high sensitivity,simplicity,rapidity and easy to control,and is now attracting increasing attention for POCT applications.However,to realize the accurate on-site quantitation,it is still challenging to develop portable devices which can precisely collect,analyze,transmit and display the ECL signals.This review will focus on how to develop a portable ECL device by summarizing recent examples and analyzing their key components part by part.Then the possible solutions to the existing challenges in the development and applications of portable ECL devices are summarized and discussed in detail,followed by offering future perspectives.We attempted to provide an appealing viewpoint to inspire interested researchers to comprehend and explore portable ECL sensing systems for practical applications and even commercialization.展开更多
Point-chiral groups as pendants conjugated to the aromatic luminophore generate weak chiroptical signals without self-assembly,showing the dependence on the flexibility of tethers,which hinders the development of poin...Point-chiral groups as pendants conjugated to the aromatic luminophore generate weak chiroptical signals without self-assembly,showing the dependence on the flexibility of tethers,which hinders the development of point-chiral molecular materials with chiroptical properties such as the circularly polarized luminescence(CPL).Herein we introduce the molecular chiroptical materials based on the point chirality on a single benzene luminophore scaffold.Substitutes were stepwise conjugated to single benzene luminophores to boost the steric hindrance and tension,whereby the chirality transfer efficiency from point-chiral substituents to luminophores was enhanced.Multiple intramolecular CH-πinteractions anchor the whole asymmetric geometry with ultra-high rotation energy barriers and excellent thermostability.Dissymmetry g-factors of circular dichroism and CPL spectra up to 10^(-3)order of magnitude were realized in solutions,which are comparable to the inherent-chiral luminophores such as helicene and binaphthyl derivatives.The acridine-appended single benzene system shows the emergence of thermally activated delayed fluorescence(TADF),which extends the potentials of the single benzene chiral system in the TADF-based chiroptical devices.展开更多
Acenes with linearly fused benzene rings have attracted much attention due to their intriguing optical and electronic properties.Nevertheless,the poor ambient stability of longer acenes has hampered the investigation ...Acenes with linearly fused benzene rings have attracted much attention due to their intriguing optical and electronic properties.Nevertheless,the poor ambient stability of longer acenes has hampered the investigation of their physicochemical properties and potential applications.The incorporation of main group elements into the acene backbones provides a viable strategy to enhance the stability,and meanwhile,generates a new family of heteroatom-doped acenes(namely heteroacenes)with modified properties and functions.In particular,boron-containing acenes represent an attractive class of heteroacenes owing to the existence of vacant p orbital of boron,which endows theπ-conjugated systems with appealing features,such as Lewis acidity,electron-accepting capability,stimuli-responsivity,and adjustable photophysical properties.During the past decade,significant progress has been achieved in the synthesis and applications of boron-containing acenes,but a focused review on this topic has been elusive.Here,we summarize the recent advances in the studies on boron-containing acenes,covering their synthesis,intriguing properties,and various applications in electroluminescence and electronic devices,as well as in biosensors,etc.We hope that this timely review will stimulate new research interest in this unique family of materials and promote their optoelectronic applications.展开更多
Developing dual-state luminophores(DSLs)with strong fluorescence in both the monomer and aggregate states is urgently needed but remains a huge challenge because most current luminophores are either aggregation-induce...Developing dual-state luminophores(DSLs)with strong fluorescence in both the monomer and aggregate states is urgently needed but remains a huge challenge because most current luminophores are either aggregation-induced emission or aggregation-caused quenching molecules.Moreover,limited by the structural conservation of the few existing DSLs,there are not enough response sites that can be used to customize various activatable fluorescent probes for specific molecular imaging.Herein,we engineered a general integration strategy for the fabrication of such DSLs with excellent photophysical properties.The DSLs,with their tunable spectra,a large Stokes shift(>170 nm),and achievable near-infrared(NIR)emission,show great potential for high-contrast imaging.Importantly,DSLs can be used as a universal platform for probe customization due to their activatable fluorescence through protection-deprotection of the phenolic hydroxyl group.Based on this,an NIR fluorescent probe DSL-Gal was developed for sensing of β-galactosidase in solutions,senescent cells,and liver metastases with high contrast,further confirming the superiority and universal feasibility of DSLs in probe design.The integration strategy may provide a novel approach for the generation of other DSLs and have great potential applications in bioimaging.展开更多
Mixed strontium-yttrium borate phosphor Sr3Y2(BO3)4 doped with Eu^3+ ions was obtained by the sol-gel Pechini method. Crystal structure of the synthesized compound was analyzed by X-ray powder diffraction. Optimal ...Mixed strontium-yttrium borate phosphor Sr3Y2(BO3)4 doped with Eu^3+ ions was obtained by the sol-gel Pechini method. Crystal structure of the synthesized compound was analyzed by X-ray powder diffraction. Optimal conditions for the synthesis were found. Photophysical properties of the phosphor samples were investigated by collecting excitation and luminescence spectra as well as measuring lumi- nescence lifetime. Judd-Ofelt analysis showed that Eu^3+ ions occupied Y^3+ sites in the crystalline network. The studied compound showed a red emission with the quantum yield of 54%-55% and can be potentially used as phosphor for plasma display panels and luminescent tubes.展开更多
Nonconventional luminophores have attracted significant attention for their unique photophysical properties and potential applications in different areas.Unlike classic luminogens consisting of remarkably conjugated s...Nonconventional luminophores have attracted significant attention for their unique photophysical properties and potential applications in different areas.Unlike classic luminogens consisting of remarkably conjugated segments,nonconventional luminophores generally possess merely nonconjugated or short-conjugated structures based on electron-rich units.Fluorescence,phosphorescence,and even color tunable room temperature phosphorescence(RTP)could be readily obtained from these unique luminophores.Herein,we summarized recent advances in the phosphorescence of nonconventional luminophores,with focus on RTP and color tunable RTP.The clustering-triggered emission(CTE)mechanism could be applied to explain the luminescence as clustering-triggered phosphorescence(CTP).Furthermore,strategies toward the RTP regulation are summarized,and corresponding applications are demonstrated.展开更多
The construction of molecular chirality is crucial for exploring novel luminophores with chiroptical properties.Classic asymmetric synthesis of chiral center or axial is not powerful enough on through-space architectu...The construction of molecular chirality is crucial for exploring novel luminophores with chiroptical properties.Classic asymmetric synthesis of chiral center or axial is not powerful enough on through-space architecture.Accessible methodologies for breaking molecular symmetry could be promising but remain less investigated.Herein,we report a novel methodology for constructing chiral through-space luminophores via simple chlorination on bridged carbazole motifs.The chlorination breaks the molecular symmetry and thus results in molecular chirality by eliminating the mirror plane or rotating axis.Interestingly,continuous multiple chlorinations can rebuild and break the symmetry of the skeleton in succession.Several chiral and achiral isomeric analogues are synthesized and characterized with impressive chiroptical properties.Results of chiral high performance liquid chromatography(HPLC),single-crystal X-ray diffraction,kinetic racemization,and chiroptical property investigation demonstrate the effectiveness of our rational design strategy.It provides a feasible methodology for exploring novel chiral luminescent materials based on versatile though-space skeletons.展开更多
Ⅰ. INTRODUCTION A kind of chemical wet process developed at the beginning of the seventies is the sol-gel method. Because of its lower synthesis temperature in inorganic materials, it is also called lowtemperature sy...Ⅰ. INTRODUCTION A kind of chemical wet process developed at the beginning of the seventies is the sol-gel method. Because of its lower synthesis temperature in inorganic materials, it is also called lowtemperature synthesis method. The sol-gel method has many obvious advantages compared with the high-temperature solid state reaction. On the one hand, the lower展开更多
基金The financial support from the National Key Research and Development Program of China(No.2022YFE0201800)Shenzhen Science and Technology Innovation Commission(Nos.GJHZ20210705142200001 and JCYJ20210324140004013)Guangdong Natural Science Foundation(Nos.2021A1515220020 and 2020B1212060077)is gratefully acknowledged。
文摘Point-of-care testing(POCT)technology is highly desirable for clinical diagnosis,healthcare monitoring,food safety inspection,and environment surveillance,because it enables rapid detection anywhere,anytime,and by anyone.Electrochemiluminescence(ECL)has been widely used in chemo-/bio analysis due to its advantages such as high sensitivity,simplicity,rapidity and easy to control,and is now attracting increasing attention for POCT applications.However,to realize the accurate on-site quantitation,it is still challenging to develop portable devices which can precisely collect,analyze,transmit and display the ECL signals.This review will focus on how to develop a portable ECL device by summarizing recent examples and analyzing their key components part by part.Then the possible solutions to the existing challenges in the development and applications of portable ECL devices are summarized and discussed in detail,followed by offering future perspectives.We attempted to provide an appealing viewpoint to inspire interested researchers to comprehend and explore portable ECL sensing systems for practical applications and even commercialization.
基金supported by the National Natural Science Foundation of China(21901145,22171165)the financial support from Youth cross-scientific innovation group of Shandong University(2020QNQT003)the project of construction and management research of laboratory of Shandong University(sy20202202)
文摘Point-chiral groups as pendants conjugated to the aromatic luminophore generate weak chiroptical signals without self-assembly,showing the dependence on the flexibility of tethers,which hinders the development of point-chiral molecular materials with chiroptical properties such as the circularly polarized luminescence(CPL).Herein we introduce the molecular chiroptical materials based on the point chirality on a single benzene luminophore scaffold.Substitutes were stepwise conjugated to single benzene luminophores to boost the steric hindrance and tension,whereby the chirality transfer efficiency from point-chiral substituents to luminophores was enhanced.Multiple intramolecular CH-πinteractions anchor the whole asymmetric geometry with ultra-high rotation energy barriers and excellent thermostability.Dissymmetry g-factors of circular dichroism and CPL spectra up to 10^(-3)order of magnitude were realized in solutions,which are comparable to the inherent-chiral luminophores such as helicene and binaphthyl derivatives.The acridine-appended single benzene system shows the emergence of thermally activated delayed fluorescence(TADF),which extends the potentials of the single benzene chiral system in the TADF-based chiroptical devices.
基金financial support from the National Natural Science Foundation of China(Nos.92256304 and 22071120)the National Key R&D Program of China(2020YFA0711500)the Fundamental Research Funds for the Central Universities.
文摘Acenes with linearly fused benzene rings have attracted much attention due to their intriguing optical and electronic properties.Nevertheless,the poor ambient stability of longer acenes has hampered the investigation of their physicochemical properties and potential applications.The incorporation of main group elements into the acene backbones provides a viable strategy to enhance the stability,and meanwhile,generates a new family of heteroatom-doped acenes(namely heteroacenes)with modified properties and functions.In particular,boron-containing acenes represent an attractive class of heteroacenes owing to the existence of vacant p orbital of boron,which endows theπ-conjugated systems with appealing features,such as Lewis acidity,electron-accepting capability,stimuli-responsivity,and adjustable photophysical properties.During the past decade,significant progress has been achieved in the synthesis and applications of boron-containing acenes,but a focused review on this topic has been elusive.Here,we summarize the recent advances in the studies on boron-containing acenes,covering their synthesis,intriguing properties,and various applications in electroluminescence and electronic devices,as well as in biosensors,etc.We hope that this timely review will stimulate new research interest in this unique family of materials and promote their optoelectronic applications.
基金the generous financial support of the National Key R&D Program of China(grant no.2019YFA0210100)the National Natural Science Foundation of China(grant nos.21890744 and 21877029)+1 种基金the Hunan Postgraduate Research and Innovation Project(grant no.CX2018B187)the China Postdoctoral Science Foundation(grant nos.2019TQ0085 and 2020M682538).
文摘Developing dual-state luminophores(DSLs)with strong fluorescence in both the monomer and aggregate states is urgently needed but remains a huge challenge because most current luminophores are either aggregation-induced emission or aggregation-caused quenching molecules.Moreover,limited by the structural conservation of the few existing DSLs,there are not enough response sites that can be used to customize various activatable fluorescent probes for specific molecular imaging.Herein,we engineered a general integration strategy for the fabrication of such DSLs with excellent photophysical properties.The DSLs,with their tunable spectra,a large Stokes shift(>170 nm),and achievable near-infrared(NIR)emission,show great potential for high-contrast imaging.Importantly,DSLs can be used as a universal platform for probe customization due to their activatable fluorescence through protection-deprotection of the phenolic hydroxyl group.Based on this,an NIR fluorescent probe DSL-Gal was developed for sensing of β-galactosidase in solutions,senescent cells,and liver metastases with high contrast,further confirming the superiority and universal feasibility of DSLs in probe design.The integration strategy may provide a novel approach for the generation of other DSLs and have great potential applications in bioimaging.
基金Project supported by International Visegrad Fund (51000547 (2010-2011))
文摘Mixed strontium-yttrium borate phosphor Sr3Y2(BO3)4 doped with Eu^3+ ions was obtained by the sol-gel Pechini method. Crystal structure of the synthesized compound was analyzed by X-ray powder diffraction. Optimal conditions for the synthesis were found. Photophysical properties of the phosphor samples were investigated by collecting excitation and luminescence spectra as well as measuring lumi- nescence lifetime. Judd-Ofelt analysis showed that Eu^3+ ions occupied Y^3+ sites in the crystalline network. The studied compound showed a red emission with the quantum yield of 54%-55% and can be potentially used as phosphor for plasma display panels and luminescent tubes.
基金supported by the National Natural Science Foundation of China(51822303,52073172)the Natural Science Foundation of Shanghai(20ZR1429400)+1 种基金“Shuguang Program”(20SG11)cosponsored by Shanghai Education Development Foundation and Shanghai Municipal Education Commissionthe State Key Laboratory of BioFibers and Eco-Textiles(Qingdao University,KF2020107)。
文摘Nonconventional luminophores have attracted significant attention for their unique photophysical properties and potential applications in different areas.Unlike classic luminogens consisting of remarkably conjugated segments,nonconventional luminophores generally possess merely nonconjugated or short-conjugated structures based on electron-rich units.Fluorescence,phosphorescence,and even color tunable room temperature phosphorescence(RTP)could be readily obtained from these unique luminophores.Herein,we summarized recent advances in the phosphorescence of nonconventional luminophores,with focus on RTP and color tunable RTP.The clustering-triggered emission(CTE)mechanism could be applied to explain the luminescence as clustering-triggered phosphorescence(CTP).Furthermore,strategies toward the RTP regulation are summarized,and corresponding applications are demonstrated.
基金supported by the National Natural Science Foundation of China(21975061)Shenzhen Fundamental Research Program(JCYJ20190806142403535,GXWD20201230155427003-20200728150952003)
文摘The construction of molecular chirality is crucial for exploring novel luminophores with chiroptical properties.Classic asymmetric synthesis of chiral center or axial is not powerful enough on through-space architecture.Accessible methodologies for breaking molecular symmetry could be promising but remain less investigated.Herein,we report a novel methodology for constructing chiral through-space luminophores via simple chlorination on bridged carbazole motifs.The chlorination breaks the molecular symmetry and thus results in molecular chirality by eliminating the mirror plane or rotating axis.Interestingly,continuous multiple chlorinations can rebuild and break the symmetry of the skeleton in succession.Several chiral and achiral isomeric analogues are synthesized and characterized with impressive chiroptical properties.Results of chiral high performance liquid chromatography(HPLC),single-crystal X-ray diffraction,kinetic racemization,and chiroptical property investigation demonstrate the effectiveness of our rational design strategy.It provides a feasible methodology for exploring novel chiral luminescent materials based on versatile though-space skeletons.
基金Project supported by the National Natural Science Foundation of China.
文摘Ⅰ. INTRODUCTION A kind of chemical wet process developed at the beginning of the seventies is the sol-gel method. Because of its lower synthesis temperature in inorganic materials, it is also called lowtemperature synthesis method. The sol-gel method has many obvious advantages compared with the high-temperature solid state reaction. On the one hand, the lower