Luminescent nanoparticles(upconversion nanoparticles,carbon dots,silicon nanoparticles and nanophosphors)have the advantages of tunable photoluminescence,good biocompatibility,low cytotoxicity and chemical/physical st...Luminescent nanoparticles(upconversion nanoparticles,carbon dots,silicon nanoparticles and nanophosphors)have the advantages of tunable photoluminescence,good biocompatibility,low cytotoxicity and chemical/physical stability.Recently,the luminescent nanoparticles have been involved in the plant research for imaging plant phenotype and improving the photosynthesis efficiency.Luminescent nanoparticles are applied for the plant imaging in vivo and in vitro,while the plant photosynthesis is dependent on the specific light wavelength,providing the luminescent nanoparticles an opportunity to optimize the agriculture light.This review presents the recent developments of luminescent nanoparticles applied on the plant imaging and photosynthesis and discusses the trend for future research.展开更多
The large size of lasers limits their applications in confined spaces,such as in biosensing and in vivo brain tissue imaging.In this regard,micron-sized lasers have been developed.They exhibit great potential for biol...The large size of lasers limits their applications in confined spaces,such as in biosensing and in vivo brain tissue imaging.In this regard,micron-sized lasers have been developed.They exhibit great potential for biological detecting,remote sensing,and depth tracking due to their small sizes,sensitive properties of their spectral fingerprints,and flexible positional modulation in the microenvironment.Lanthanide-based luminescent materials that possess long excited-state lifetime,narrow emission bandwidth,and upconversion behaviors are promising as gain mediums for novel microlasers.In addition,lanthanide-based microlasers could be generated under natural ambient conditions with pumped or continuous light sources,which significantly promotes the practical applications of microlasers.Recent progress in the design,synthesis,and biomedical applications of lanthanide-based microlasers has been outlined in this review.Lanthanide ions doped and upconverted lanthanide-based microlasers are highlighted,which exhibit advantageous structures,miniaturized dimensions,and high lasing performance.The applications of lanthanide-based microlasers are further discussed,the upconverted microlasers show great advantages for biological applications owing to their tunable excitation and emission characteristics and excellent environmental stability.Moreover,perspectives and challenges in the field of lanthanide-based microlasers are presented.展开更多
Novel PEI-modified NaBiF4:Yb3+/Er3+upconversion nanoparticles(UCNPs)with hollow structure were prepared by a surface modification free one-step solvothermal method and applied as a luminescent probe to determinate wat...Novel PEI-modified NaBiF4:Yb3+/Er3+upconversion nanoparticles(UCNPs)with hollow structure were prepared by a surface modification free one-step solvothermal method and applied as a luminescent probe to determinate water content in organic solvents.XRD,SEM and HRTEM results demonstrate that the obtained PEI-NaBiF4:Yb3+/Er3+UCNPs are pure hexagonal phase with uniform size.The successful modification of PEI on the UCNPs surface was evidenced byζ-potential test,XPS and TG analysis.These synthesized UCNPs are disintegrated into smaller nanoparticles in the presence of water and thus result in a surface quenching effect,which show the features of 0-100%wide range water response in various organic solvents.The sensing performance towards real samples was validated by the water content determination in beer,rum and white spirit.Furthermore,the luminescence intensity variation of the PEI-modified NaBiF4:Yb3+/Er3+enable the test visualization and ease of portability.展开更多
Non-contact,self-referenced and near-infrared luminescent nanothermometers have been recognized as emerging tools in the fields of nanomedicine and nanotechnology due to their great capability of precise temperature r...Non-contact,self-referenced and near-infrared luminescent nanothermometers have been recognized as emerging tools in the fields of nanomedicine and nanotechnology due to their great capability of precise temperature readout at the nanoscale and real-time deep-tissue imaging.However,the development of multifunctional and biocompatible luminescent nanothermometers operating within the optically transparent biological windows with high thermal sensitivity(>2.0%/K)remains challenging.Here,we present(Gd0.98Nd0.02)2O3 nanothermometers operated effectively within the first and second biological windows upon continuous-wave laser diode excitation at 808 nm.Ratiometric thermometric parameters are defined by the relative changes in the emission intensities originating from the two Stark components of the 4 F3/2 level(R2 and R1)to the 4 I9/2(900-1000 nm),4 I11/2(1035-1155 nm)and 4 I13/2(1300-1450 nm)multiplets.The thermo metric parameters are evaluated for colloidal samples in a cell culture medium and powder samples,and the highest thermal sensitivity(2.18%/K at 298 K)is attained for the former in the first biological window(both the excitation and emission in the 800-965 nm range).The repeatability and temperature uncertainty are 99%and 1.2 K,respectively.The nanothermometers are biocompatible with human MNT-1 melanoma and HaCaT cells for 24 h of exposure and nanoparticle concentration up to 0.400 mg/mL,showing their potential for applications in nanomedicine,e.g.,intracellular imaging and temperature mapping.展开更多
A simple polyol and sol–gel Stober process were employed for synthesis of YF_3:Tb~+(core), YF_3:Tb~+@LaF_3(core/shell) and YF_3:Tb~+@LaF_3@SiO_2(core/shell/SiO_2) nanoparticles(NPs). The phase purity, c...A simple polyol and sol–gel Stober process were employed for synthesis of YF_3:Tb~+(core), YF_3:Tb~+@LaF_3(core/shell) and YF_3:Tb~+@LaF_3@SiO_2(core/shell/SiO_2) nanoparticles(NPs). The phase purity, crystalinity,morphology, optical and photoluminescence properties were investigated and discussed with the help of various analytical techniques including X-ray diffraction pattern,FE-transmission electron microscopy(TEM),FTIR, UV/vis absorption, energy band gap and emission spectra. XRD andFE-TEM studies indicate the formation of core/shell nanostructure and ~10 nm thick amorphous silica surface coating surrounding the core-NPs, which is also confirmed byFTIR spectral results. The surface modifications of core-NPs significantly affect the optical features in the form of energy band gap, which were correlated with particle size of the nanomaterials. The comparative emission spectral results show that after inert layer coating the luminescent core-NPs display stronger emission intensity in respect to core and silica coated core/shell/SiO_2-NPs. The solubility character along with colloidal stability was improved after silica surface modification, whereas luminescent intensity was suppressed causing the surface functionalized with high energy silanol(Si-OH) molecules. These novel luminescent nanomaterials with enhanced emission intensity and excellent solubility in aqueous solvents would be potentially useful for fluorescence bioimaging/optical bio-probe etc.展开更多
Hollow upconversion nanoparticles with tunable central cavity size can be used as self-referenced luminescent thermometers over a wide temperature range.
基金Project supported by the National Natural Science Foundations of China(21671070)the GDUPS(2018)for Prof.Bingfu LEIthe Guangzhou Science & Technology Project(201707010033,201704030086)
文摘Luminescent nanoparticles(upconversion nanoparticles,carbon dots,silicon nanoparticles and nanophosphors)have the advantages of tunable photoluminescence,good biocompatibility,low cytotoxicity and chemical/physical stability.Recently,the luminescent nanoparticles have been involved in the plant research for imaging plant phenotype and improving the photosynthesis efficiency.Luminescent nanoparticles are applied for the plant imaging in vivo and in vitro,while the plant photosynthesis is dependent on the specific light wavelength,providing the luminescent nanoparticles an opportunity to optimize the agriculture light.This review presents the recent developments of luminescent nanoparticles applied on the plant imaging and photosynthesis and discusses the trend for future research.
基金supported by the National Natural Science Foundation of China(Nos.22020102003,22207104,and 22125701)the National Key R&D Program of China(Nos.2022YFF071000 and 2021YFF0701800)+2 种基金Natural Science Foundation of Jilin Province(No.20230101102JC)China Postdoctoral Science Foundation(Nos.2020M681055 and 2022T150634)Young Elite Scientists Sponsorship Program by CAST(Nos.2021-2023QNRC and YESS20210067).
文摘The large size of lasers limits their applications in confined spaces,such as in biosensing and in vivo brain tissue imaging.In this regard,micron-sized lasers have been developed.They exhibit great potential for biological detecting,remote sensing,and depth tracking due to their small sizes,sensitive properties of their spectral fingerprints,and flexible positional modulation in the microenvironment.Lanthanide-based luminescent materials that possess long excited-state lifetime,narrow emission bandwidth,and upconversion behaviors are promising as gain mediums for novel microlasers.In addition,lanthanide-based microlasers could be generated under natural ambient conditions with pumped or continuous light sources,which significantly promotes the practical applications of microlasers.Recent progress in the design,synthesis,and biomedical applications of lanthanide-based microlasers has been outlined in this review.Lanthanide ions doped and upconverted lanthanide-based microlasers are highlighted,which exhibit advantageous structures,miniaturized dimensions,and high lasing performance.The applications of lanthanide-based microlasers are further discussed,the upconverted microlasers show great advantages for biological applications owing to their tunable excitation and emission characteristics and excellent environmental stability.Moreover,perspectives and challenges in the field of lanthanide-based microlasers are presented.
基金Project supported by the National Natural Science Foundation of China(21804119,10804099)Key projects of Natural Science Foundation of Zhejiang Province(LZ18B050002).
文摘Novel PEI-modified NaBiF4:Yb3+/Er3+upconversion nanoparticles(UCNPs)with hollow structure were prepared by a surface modification free one-step solvothermal method and applied as a luminescent probe to determinate water content in organic solvents.XRD,SEM and HRTEM results demonstrate that the obtained PEI-NaBiF4:Yb3+/Er3+UCNPs are pure hexagonal phase with uniform size.The successful modification of PEI on the UCNPs surface was evidenced byζ-potential test,XPS and TG analysis.These synthesized UCNPs are disintegrated into smaller nanoparticles in the presence of water and thus result in a surface quenching effect,which show the features of 0-100%wide range water response in various organic solvents.The sensing performance towards real samples was validated by the water content determination in beer,rum and white spirit.Furthermore,the luminescence intensity variation of the PEI-modified NaBiF4:Yb3+/Er3+enable the test visualization and ease of portability.
基金Project supported by CICECO-Aveiro Institute of Materials(FCT Ref.UID/CTM/50011/2019)CESAM(Ref No.FCT UID/AMB/50017-POCI-01-0145-FEDER-007638)。
文摘Non-contact,self-referenced and near-infrared luminescent nanothermometers have been recognized as emerging tools in the fields of nanomedicine and nanotechnology due to their great capability of precise temperature readout at the nanoscale and real-time deep-tissue imaging.However,the development of multifunctional and biocompatible luminescent nanothermometers operating within the optically transparent biological windows with high thermal sensitivity(>2.0%/K)remains challenging.Here,we present(Gd0.98Nd0.02)2O3 nanothermometers operated effectively within the first and second biological windows upon continuous-wave laser diode excitation at 808 nm.Ratiometric thermometric parameters are defined by the relative changes in the emission intensities originating from the two Stark components of the 4 F3/2 level(R2 and R1)to the 4 I9/2(900-1000 nm),4 I11/2(1035-1155 nm)and 4 I13/2(1300-1450 nm)multiplets.The thermo metric parameters are evaluated for colloidal samples in a cell culture medium and powder samples,and the highest thermal sensitivity(2.18%/K at 298 K)is attained for the former in the first biological window(both the excitation and emission in the 800-965 nm range).The repeatability and temperature uncertainty are 99%and 1.2 K,respectively.The nanothermometers are biocompatible with human MNT-1 melanoma and HaCaT cells for 24 h of exposure and nanoparticle concentration up to 0.400 mg/mL,showing their potential for applications in nanomedicine,e.g.,intracellular imaging and temperature mapping.
基金funded byNational Plan for Science,Technology and Innovation(MAARIFAH)King Abdulaziz City for Science and Technology,Kingdom of Saudi Arabia,award number(No.13-Bio1246-02)
文摘A simple polyol and sol–gel Stober process were employed for synthesis of YF_3:Tb~+(core), YF_3:Tb~+@LaF_3(core/shell) and YF_3:Tb~+@LaF_3@SiO_2(core/shell/SiO_2) nanoparticles(NPs). The phase purity, crystalinity,morphology, optical and photoluminescence properties were investigated and discussed with the help of various analytical techniques including X-ray diffraction pattern,FE-transmission electron microscopy(TEM),FTIR, UV/vis absorption, energy band gap and emission spectra. XRD andFE-TEM studies indicate the formation of core/shell nanostructure and ~10 nm thick amorphous silica surface coating surrounding the core-NPs, which is also confirmed byFTIR spectral results. The surface modifications of core-NPs significantly affect the optical features in the form of energy band gap, which were correlated with particle size of the nanomaterials. The comparative emission spectral results show that after inert layer coating the luminescent core-NPs display stronger emission intensity in respect to core and silica coated core/shell/SiO_2-NPs. The solubility character along with colloidal stability was improved after silica surface modification, whereas luminescent intensity was suppressed causing the surface functionalized with high energy silanol(Si-OH) molecules. These novel luminescent nanomaterials with enhanced emission intensity and excellent solubility in aqueous solvents would be potentially useful for fluorescence bioimaging/optical bio-probe etc.
文摘Hollow upconversion nanoparticles with tunable central cavity size can be used as self-referenced luminescent thermometers over a wide temperature range.