期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Optuna框架的L_(p)范数约束下多核支持向量机在违约风险预测中的应用
1
作者
郑怡昕
王重仁
《现代电子技术》
北大核心
2024年第6期147-153,共7页
针对违约数据存在数据量大、维度多、不平衡及噪声大等缺点,提出一种改进的支持向量机方法,即基于Optuna框架的L_(p)范数约束的代价敏感的多核支持向量机(L_(p)-Optuna-SVM)。该方法采用成本矩阵对不同预测错误赋予不同数值,通过多核学...
针对违约数据存在数据量大、维度多、不平衡及噪声大等缺点,提出一种改进的支持向量机方法,即基于Optuna框架的L_(p)范数约束的代价敏感的多核支持向量机(L_(p)-Optuna-SVM)。该方法采用成本矩阵对不同预测错误赋予不同数值,通过多核学习引入多核混合核函数组合;同时采用Optuna优化框架对犯错成本、核函数的参数和权重实现了自动化的调优过程;还在核函数权重上引入L_(p)范数约束,以提高模型对噪声和异常数据的鲁棒性。最后,对4种常用的基础核函数组合的L_(p)-Optuna-SVM进行探讨,并与单核支持向量机以及K邻近法、逻辑回归、高斯贝叶斯进行对比。结果表明,在给定数据集上,L_(p)-Optuna-SVM在违约数据上的g-mean和AUC均高于其他算法,并且在加了不同方差的噪声数据集上,该算法整体依旧保持较好的鲁棒性。
展开更多
关键词
多核支持向量机
Optuna优化框架
L_(p)范数约束
多核学习
不平衡数据集
违约风险预测
下载PDF
职称材料
题名
基于Optuna框架的L_(p)范数约束下多核支持向量机在违约风险预测中的应用
1
作者
郑怡昕
王重仁
机构
山东财经大学
出处
《现代电子技术》
北大核心
2024年第6期147-153,共7页
基金
山东省科技型中小企业创新能力提升工程(2023TSGC0208)。
文摘
针对违约数据存在数据量大、维度多、不平衡及噪声大等缺点,提出一种改进的支持向量机方法,即基于Optuna框架的L_(p)范数约束的代价敏感的多核支持向量机(L_(p)-Optuna-SVM)。该方法采用成本矩阵对不同预测错误赋予不同数值,通过多核学习引入多核混合核函数组合;同时采用Optuna优化框架对犯错成本、核函数的参数和权重实现了自动化的调优过程;还在核函数权重上引入L_(p)范数约束,以提高模型对噪声和异常数据的鲁棒性。最后,对4种常用的基础核函数组合的L_(p)-Optuna-SVM进行探讨,并与单核支持向量机以及K邻近法、逻辑回归、高斯贝叶斯进行对比。结果表明,在给定数据集上,L_(p)-Optuna-SVM在违约数据上的g-mean和AUC均高于其他算法,并且在加了不同方差的噪声数据集上,该算法整体依旧保持较好的鲁棒性。
关键词
多核支持向量机
Optuna优化框架
L_(p)范数约束
多核学习
不平衡数据集
违约风险预测
Keywords
multi-kernel support vector machine
Optuna optimization framework
lp
-
norm
-
constrained
multi-kernel learning
unbalanced dataset
default risk prediction
分类号
TN919-34 [电子电信—通信与信息系统]
TP311 [电子电信—信息与通信工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于Optuna框架的L_(p)范数约束下多核支持向量机在违约风险预测中的应用
郑怡昕
王重仁
《现代电子技术》
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部