The main purpose of this paper is to introduce the matrix extension of the pseudo Laguerre matrix polynomials and to explore the formal properties of the operational rules and the principle of quasi-monomiality to der...The main purpose of this paper is to introduce the matrix extension of the pseudo Laguerre matrix polynomials and to explore the formal properties of the operational rules and the principle of quasi-monomiality to derive a number of properties for pseudo Laguerre matrix polynomials.展开更多
In this paper, I shall sketch a new way to consider a Lindenbaum-Tarski algebra as a 3D logical space in which any one (of the 256 statements) occupies a well-defined position and it is identified by a numerical ID. T...In this paper, I shall sketch a new way to consider a Lindenbaum-Tarski algebra as a 3D logical space in which any one (of the 256 statements) occupies a well-defined position and it is identified by a numerical ID. This allows pure mechanical computation both for generating rules and inferences. It is shown that this abstract formalism can be geometrically represented with logical spaces and subspaces allowing a vectorial representation. Finally, it shows the application to quantum computing through the example of three coupled harmonic oscillators.展开更多
In analogy to the role of Lommel polynomials ?in relation to Bessel functions Jv(z) the theory of Associated Hermite polynomials in the scaled form ?with parmeter v to Parabolic Cylinder functions Dv(z) is developed. ...In analogy to the role of Lommel polynomials ?in relation to Bessel functions Jv(z) the theory of Associated Hermite polynomials in the scaled form ?with parmeter v to Parabolic Cylinder functions Dv(z) is developed. The group-theoretical background with the 3-parameter group of motions M(2) in the plane for Bessel functions and of the Heisenberg-Weyl group W(2) for Parabolic Cylinder functions is discussed and compared with formulae, in particular, for the lowering and raising operators and the eigenvalue equations. Recurrence relations for the Associated Hermite polynomials and for their derivative and the differential equation for them are derived in detail. Explicit expressions for the Associated Hermite polynomials with involved Jacobi polynomials at argument zero are given and by means of them the Parabolic Cylinder functions are represented by two such basic functions.展开更多
Starting from general Jacobi polynomials we derive for the Ul-traspherical polynomials as their special case a set of related polynomials which can be extended to an orthogonal set of functions with interesting proper...Starting from general Jacobi polynomials we derive for the Ul-traspherical polynomials as their special case a set of related polynomials which can be extended to an orthogonal set of functions with interesting properties. It leads to an alternative definition of the Ultraspherical polynomials by a fixed integral operator in application to powers of the variable u in an analogous way as it is possible for Hermite polynomials. From this follows a generating function which is apparently known only for the Legendre and Chebyshev polynomials as their special case. Furthermore, we show that the Ultraspherical polynomials form a realization of the SU(1,1) Lie algebra with lowering and raising operators which we explicitly determine. By reordering of multiplication and differentiation operators we derive new operator identities for the whole set of Jacobi polynomials which may be applied to arbitrary functions and provide then function identities. In this way we derive a new “convolution identity” for Jacobi polynomials and compare it with a known convolution identity of different structure for Gegenbauer polynomials. In short form we establish the connection of Jacobi polynomials and their related orthonormalized functions to the eigensolution of the Schrödinger equation to Pöschl-Teller potentials.展开更多
The factorization of the radial Schrodinger equation of n-dimensional (n≥2) hydrogen atoms and isotropic harmonic oscillators was investigated and four kinds of raising and lowering operators were derived.The relatio...The factorization of the radial Schrodinger equation of n-dimensional (n≥2) hydrogen atoms and isotropic harmonic oscillators was investigated and four kinds of raising and lowering operators were derived.The relation between n -dimensional (n≥2) and one-dimensional hydrogen atoms and harmonic oscillators was discussed.展开更多
文摘The main purpose of this paper is to introduce the matrix extension of the pseudo Laguerre matrix polynomials and to explore the formal properties of the operational rules and the principle of quasi-monomiality to derive a number of properties for pseudo Laguerre matrix polynomials.
文摘In this paper, I shall sketch a new way to consider a Lindenbaum-Tarski algebra as a 3D logical space in which any one (of the 256 statements) occupies a well-defined position and it is identified by a numerical ID. This allows pure mechanical computation both for generating rules and inferences. It is shown that this abstract formalism can be geometrically represented with logical spaces and subspaces allowing a vectorial representation. Finally, it shows the application to quantum computing through the example of three coupled harmonic oscillators.
文摘In analogy to the role of Lommel polynomials ?in relation to Bessel functions Jv(z) the theory of Associated Hermite polynomials in the scaled form ?with parmeter v to Parabolic Cylinder functions Dv(z) is developed. The group-theoretical background with the 3-parameter group of motions M(2) in the plane for Bessel functions and of the Heisenberg-Weyl group W(2) for Parabolic Cylinder functions is discussed and compared with formulae, in particular, for the lowering and raising operators and the eigenvalue equations. Recurrence relations for the Associated Hermite polynomials and for their derivative and the differential equation for them are derived in detail. Explicit expressions for the Associated Hermite polynomials with involved Jacobi polynomials at argument zero are given and by means of them the Parabolic Cylinder functions are represented by two such basic functions.
文摘Starting from general Jacobi polynomials we derive for the Ul-traspherical polynomials as their special case a set of related polynomials which can be extended to an orthogonal set of functions with interesting properties. It leads to an alternative definition of the Ultraspherical polynomials by a fixed integral operator in application to powers of the variable u in an analogous way as it is possible for Hermite polynomials. From this follows a generating function which is apparently known only for the Legendre and Chebyshev polynomials as their special case. Furthermore, we show that the Ultraspherical polynomials form a realization of the SU(1,1) Lie algebra with lowering and raising operators which we explicitly determine. By reordering of multiplication and differentiation operators we derive new operator identities for the whole set of Jacobi polynomials which may be applied to arbitrary functions and provide then function identities. In this way we derive a new “convolution identity” for Jacobi polynomials and compare it with a known convolution identity of different structure for Gegenbauer polynomials. In short form we establish the connection of Jacobi polynomials and their related orthonormalized functions to the eigensolution of the Schrödinger equation to Pöschl-Teller potentials.
文摘The factorization of the radial Schrodinger equation of n-dimensional (n≥2) hydrogen atoms and isotropic harmonic oscillators was investigated and four kinds of raising and lowering operators were derived.The relation between n -dimensional (n≥2) and one-dimensional hydrogen atoms and harmonic oscillators was discussed.