期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Performance of low-salinity water flooding for enhanced oil recovery improved by SiO_2 nanoparticles 被引量:7
1
作者 Tangestani Ebrahim Vafaie Sefti Mohsen +2 位作者 Shadman Mohammad Mahdi Kazemi Tooseh Esmaeel Ahmadi Saeb 《Petroleum Science》 SCIE CAS CSCD 2019年第2期357-365,共9页
Low-salinity water injection has been utilized as a promising method for oil recovery in recent years. Low-salinity water flooding changes the ion composition or brine salinity for improving oil recovery. Recently, th... Low-salinity water injection has been utilized as a promising method for oil recovery in recent years. Low-salinity water flooding changes the ion composition or brine salinity for improving oil recovery. Recently, the application of nanoparticles with low-salinity water flooding has shown remarkable results in enhanced oil recovery(EOR). Many studies have been performed on the effect of nanofluids on EOR mechanisms. Their results showed that nanofluids can improve oil recovery when used in low-salinity water flooding. In this work, the effects of injection of low-salinity water and low-salinity nanofluid(prepared by adding SiO_2 nanoparticles to low-salinity water) on oil recovery were investigated. At first, the effects of ions were investigated with equal concentrations in low-salinity water flooding. The experimental results showed that the monovalent ions had better performance than the divalent ions because of them having more negative zeta potential and less ionic strength. Also, low-salinity water flooding recovered 6.1% original oil in place(OOIP) more than the high-salinity flooding. Contact angle measurements demonstrated that low-salinity water could reduce the contact angle between oil and water. Then in the second stage, experiments were continued by adding SiO_2 nanoparticles to the K+ solution which had the highest oil recovery at the first stage. The experimental results illustrated that the addition of Si02 nanoparticles up to 0.05 wt% increased oil recovery by about 4% OOIP more than the low-salinity water flooding. 展开更多
关键词 Enhanced OIL RECOVERY low-salinity water low-salinity nanofluid ZETA potential
下载PDF
How much would silica nanoparticles enhance the performance of low-salinity water flooding? 被引量:3
2
作者 Amir Hossein Saeedi Dehaghani Reza Daneshfar 《Petroleum Science》 SCIE CAS CSCD 2019年第3期591-605,共15页
Nanofluids and low-salinity water(LSW)flooding are two novel techniques for enhanced oil recovery.Despite some efforts on investigating benefits of each method,the pros and cons of their combined application need to b... Nanofluids and low-salinity water(LSW)flooding are two novel techniques for enhanced oil recovery.Despite some efforts on investigating benefits of each method,the pros and cons of their combined application need to be evaluated.This work sheds light on performance of LSW augmented with nanoparticles through examining wettability alteration and the amount of incremental oil recovery during the displacement process.To this end,nanofluids were prepared by dispersing silica nanoparticles(0.1 wt%,0.25 wt%,0.5 wt% and 0.75 wt%)in 2,10,20 and 100 times diluted samples of Persian Gulf seawater.Contact angle measurements revealed a crucial role of temperature,where no wettability alteration occurred up to 80 ℃.Also,an optimum wettability state(with contact angle 22°)was detected with a 20 times diluted sample of seawater augmented with 0.25 wt% silica nanoparticles.Also,extreme dilution(herein 100 times)will be of no significance.Throughout micromodel flooding,it was found that in an oil-wet condition,a combination of silica nanoparticles dispersed in 20 times diluted brine had the highest displacement efficiency compared to silica nanofluids prepared with deionized water.Finally,by comparing oil recoveries in both water-and oil-wet micromodels,it was concluded that nanoparticles could enhance applicability of LSW via strengthening wettability alteration toward a favorable state and improving the sweep efficiency. 展开更多
关键词 low-salinity water Silica nanoparticles low-salinity nanofluid MICROMODEL Enhanced oil recovery Wettability alteration
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部