为研究WSC-DTPA(水溶性低分子量壳聚糖WSC,二乙烯三胺五乙酸DTPA)纳米粒的辐射防护作用,采用N-乙酰化反应和离子凝胶法制备不同游离氨基含量的WSC-DTPA纳米粒;MTT法检测其对6 Gy60Coγ射线照射后48 h BRL细胞存活率的影响;活细胞工作站...为研究WSC-DTPA(水溶性低分子量壳聚糖WSC,二乙烯三胺五乙酸DTPA)纳米粒的辐射防护作用,采用N-乙酰化反应和离子凝胶法制备不同游离氨基含量的WSC-DTPA纳米粒;MTT法检测其对6 Gy60Coγ射线照射后48 h BRL细胞存活率的影响;活细胞工作站观察BRL细胞摄取FITC-WSC-DTPA纳米荧光探针的情况。结果表明:成功合成了游离氨基含量分别为92.7%、74.3%、1.59%的WSC-DTPA聚合物;WSC、WSC纳米粒以及WSC-DTPA纳米粒(氨基含量为92.7%,浓度在6.25μg/mL以上),随着药物浓度的增加,BRL细胞存活率均显著高于单纯照射组,差别有统计学意义(p<0.05),而游离氨基含量为1.59%的WSC-DTPA纳米粒无辐射保护作用;活细胞工作站检验结果显示2 h内WSC纳米粒、WSC-DTPA纳米粒能够进入BRL细胞,而非纳米化的WSC-DTPA聚合物无法进入细胞。展开更多
Low molecular weight N-succinyl-chitosans with different degrees of substitution were synthesized by controlling reaction temperature, reaction time, and the molar ratio of the low molecular weight chitosan to succini...Low molecular weight N-succinyl-chitosans with different degrees of substitution were synthesized by controlling reaction temperature, reaction time, and the molar ratio of the low molecular weight chitosan to succinic anhydride. The structure of the low molecular weight N-succinyl-chitosan was characterized by infrared spectroscopy(IR), by which —COCH_ 2CH_ 2COOH was proved to be introduced to the —NH_ 2 of the low molecular weight chitosan. The moisture adsorption and moisture retention capacities of the low molecular weight chitosan derivatives with different degrees of substitution were investigated. The results indicate that the moisture adsorption and moisture retention capacities of the low molecular weight N-succinyl-chitosan increase with the increase of the degree of substitution. When the degree of substitution is greater than 38%, the derivatives have better moisture adsorption and moisture retention capacities than hyaluronic acid.展开更多
文摘为研究WSC-DTPA(水溶性低分子量壳聚糖WSC,二乙烯三胺五乙酸DTPA)纳米粒的辐射防护作用,采用N-乙酰化反应和离子凝胶法制备不同游离氨基含量的WSC-DTPA纳米粒;MTT法检测其对6 Gy60Coγ射线照射后48 h BRL细胞存活率的影响;活细胞工作站观察BRL细胞摄取FITC-WSC-DTPA纳米荧光探针的情况。结果表明:成功合成了游离氨基含量分别为92.7%、74.3%、1.59%的WSC-DTPA聚合物;WSC、WSC纳米粒以及WSC-DTPA纳米粒(氨基含量为92.7%,浓度在6.25μg/mL以上),随着药物浓度的增加,BRL细胞存活率均显著高于单纯照射组,差别有统计学意义(p<0.05),而游离氨基含量为1.59%的WSC-DTPA纳米粒无辐射保护作用;活细胞工作站检验结果显示2 h内WSC纳米粒、WSC-DTPA纳米粒能够进入BRL细胞,而非纳米化的WSC-DTPA聚合物无法进入细胞。
文摘Low molecular weight N-succinyl-chitosans with different degrees of substitution were synthesized by controlling reaction temperature, reaction time, and the molar ratio of the low molecular weight chitosan to succinic anhydride. The structure of the low molecular weight N-succinyl-chitosan was characterized by infrared spectroscopy(IR), by which —COCH_ 2CH_ 2COOH was proved to be introduced to the —NH_ 2 of the low molecular weight chitosan. The moisture adsorption and moisture retention capacities of the low molecular weight chitosan derivatives with different degrees of substitution were investigated. The results indicate that the moisture adsorption and moisture retention capacities of the low molecular weight N-succinyl-chitosan increase with the increase of the degree of substitution. When the degree of substitution is greater than 38%, the derivatives have better moisture adsorption and moisture retention capacities than hyaluronic acid.