The reduction of low-concentration carbon dioxide with water to organic fuels is still a huge challenge. In this study, we successfully designed the partially oxidized cobalt nanoparticles coated by the nitrogendoped ...The reduction of low-concentration carbon dioxide with water to organic fuels is still a huge challenge. In this study, we successfully designed the partially oxidized cobalt nanoparticles coated by the nitrogendoped carbon layer(Co@NC) of 2-8 nm via a facile method and then interspersed with different amount of Pt nanoparticles. The Co@NC decorated with 1 wt% Pt exhibits the best ability for COreduction to CHand a CHproduction rate of 14.4 μmol·g·his achieved. It is worth noting that the system is carried out under low-concentration CO(400 ppm) circumstance without any sacrificial agent, which could be meaningful to the design of catalysts for atmospheric COreduction.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.51772312 and 51472260)the Environmental Functional Materials Innovation Team of Ministry of Education(IRT 16R49)the International Joint Laboratory on Resource Chemistry(IJLRC)
文摘The reduction of low-concentration carbon dioxide with water to organic fuels is still a huge challenge. In this study, we successfully designed the partially oxidized cobalt nanoparticles coated by the nitrogendoped carbon layer(Co@NC) of 2-8 nm via a facile method and then interspersed with different amount of Pt nanoparticles. The Co@NC decorated with 1 wt% Pt exhibits the best ability for COreduction to CHand a CHproduction rate of 14.4 μmol·g·his achieved. It is worth noting that the system is carried out under low-concentration CO(400 ppm) circumstance without any sacrificial agent, which could be meaningful to the design of catalysts for atmospheric COreduction.