The MohroCoulomb criterion has been widely used to explain formation of fractures. However, it fails to explain large strain deformation that widely occurs in nature. There is presently a new theory, the MEMC, which i...The MohroCoulomb criterion has been widely used to explain formation of fractures. However, it fails to explain large strain deformation that widely occurs in nature. There is presently a new theory, the MEMC, which is mathematically expressed as Meff = ((σ1-σ3) L.sin 2α sin α)/2, where σ1-σ3 represents the yield strength of the related rock, L is a unit length and a is the angle between σ1 and deformation bands. This criterion demonstrates that the maximum value appears at angles of ±54.7° to σ1 and there is a slight difference in the moment in the range of 55°±10°. The range covers the whole observations available from nature and experiments. Its major implications include: (1) it can be used to determine the stress state when the related deformation features formed; (2) it provides a new approach to determine the Wk of the related ductile shear zone if only the ratio of the vorticity and strain rate remains fixed; (3) It can be used to explain (a) the obtuse angle in the contraction direction of conjugate kink-bands and extensional crenulation cleavages, (b) formation of low-angle normal faults and high-angle reverse faults, (c) lozenge ductile shear zones in basement terranes, (d) some crocodile structures in seismic profiles and (e) detachment folds in foreland basins.展开更多
The Louzidian low-angle ductile shear detachment zone at the south of Chifeng is a SE-dipping, low-angle normal fault system. It is composed mainly of ductile shear zone, ductile-brittle shear zone and brittle fault z...The Louzidian low-angle ductile shear detachment zone at the south of Chifeng is a SE-dipping, low-angle normal fault system. It is composed mainly of ductile shear zone, ductile-brittle shear zone and brittle fault zone. The ductile shear zone consists of, from bottom to top, mylonitic rocks, protomylonites and mylonites. Finite strain measurement of feldspar strain markers from those rocks using the Rf /φ method shows that strain intensities (Es) of the mylonite at core of the ductile shear zone (Es=0.65-0.96) are higher than those of the mylonitic rocks close to the granite intrusions (Es=0.59-0.62) and of the protomylonites at top of the ductile shear zone (Es= 0.47-0.70), and the strain types of the protomylonites and mylonties are elongate strain and plane-flattening strain, respectively. The kinematic vorticity values (Wk) estimated by the Polar Mohr diagram and the Rigid Grain Net range from 0.81 to 0.90 with an average of 0.85 for the protomylonites, and from 0.53 to 0.80 with 0.66 on average for the mylonites; Wk values of the extensional crenulation cleavage, i.e., C′, estimated by C′ method range from 0.63 to 0.37 with an average of 0.50. The angles between the maximum principal stress and shearing direction determined using the Maximum effective moment criterion evolved from 61° to 69° and to 75°, and finally normal to shearing direction. The results of strain and kinematic vorticity measurements suggest that high strain corresponds to low kinematic vorticity. Kinematic vorticity measurements show that the Louzidian low-angle ductile shear detachment zone is a result of a combination of simple-dominated general shearing at the early stage and pure-dominated general shearing at the late stage. All these, together with isotope geochronology and regional tectonic background, suggest that the Louzidian ductile shear detachment zone resulted from a combination of crust extension and magma intrusion. The model of simple shear at the early stage and pure shear at the late stage in the formation of m展开更多
Nanolaminated structures composed of low-angle grain boundaries(LAGBs) possess high thermal stability. In this paper, a gradient nanolaminated(GNL) surface layer with smooth finish was fabricated on an interstitial-fr...Nanolaminated structures composed of low-angle grain boundaries(LAGBs) possess high thermal stability. In this paper, a gradient nanolaminated(GNL) surface layer with smooth finish was fabricated on an interstitial-free steel by means of surface mechanical rolling treatment. Microstructural observations demonstrated that the average lamellar thickness is about 80 nm in the topmost surface layer and increases with increasing depth. High thermal stability was confirmed in the GNL surface layer after annealing at 500℃. Diffusion measurements showed that effective diffusivity of Cr in GNL layer is 4–6 orders of magnitude higher than lattice diffusivity within the temperature range from 400 to 500℃. This might be attributed to numerous LAGBs or dislocation structures with a higher energy state in the GNL surface layer. This work demonstrates the possibility to advanced chromizing(or other surface alloying)processes of steels with formation of GNL surface layer, so that a thicker alloyed surface layer with a stable nanostructure is achieved.展开更多
Low-angle normal faults(dip<30°,LANFs)are widespread in the northern margin of the South China Sea where the maximum crust thickness is approximately 30.0 km.Based on 3 D seismic survey data and drilling wells...Low-angle normal faults(dip<30°,LANFs)are widespread in the northern margin of the South China Sea where the maximum crust thickness is approximately 30.0 km.Based on 3 D seismic survey data and drilling wells in the Enping sag,evidences for LANFs that initially formed at high-angles are discussed.After a detailed investigation of extensional fault system and description of 3 D fault geometry,the initial fault dips under the model of distributed vertical simple shear are also calculated.The results indicate that the present-day dip angles of the LANFs are in the range of 12°to 29°,and the initial fault dip angles are in the range of 39°to 49°.Deep seismic imaging suggests that the upper crust in the footwall block of the LANFs was tilted at an angle of ~14°to 22°due to the isostatic rebound during rifting.Moreover,the temporal and spatial sequences of the lateral growth of the LANFs have been investigated by the seismic interpretation of four isochronous stratigraphic interfaces,which demonstrates that two individual fault segments propagated towards each other and subsequently,were hard-linked during the Early Eocene.展开更多
The low-angle tracking in multipath interference is a challenging problem for the Very High Frequency(VHF)radar.The colocated Multi-Input Multi-Output(MIMO)technique can remedy such a defect.In this paper,a Joint Beam...The low-angle tracking in multipath interference is a challenging problem for the Very High Frequency(VHF)radar.The colocated Multi-Input Multi-Output(MIMO)technique can remedy such a defect.In this paper,a Joint Beam-Target Assignment and Power Allocation(JBTAPA)strategy is proposed for the VHF-MIMO radar network tracking low-angle targets.The core of the JBTAPA strategy is to improve the worst tracking accuracy among multiple targets by assigning appropriate beams to targets and allocating the power resource in each beam using the feedback information in the tracking cycle.Taking into account the transmit multipath and receive multipath,we derive the Cramer-Rao Lower Bound(CRLB)on angle estimate,which is then incor-porated in the Predicted Conditional CRLB(PC-CRLB).A more accurate and consistent lower bound is provided as the optimization metric since the PC-CRLB is based on the most recently real-ized measurements.A two-stage-based technique is proposed to solve the JBTAPA problem,which is originally NP-hard.Simulation results verify the effectiveness and efficiency of the proposed method.The results also imply that the target reflectivity plays one of the important roles in resource allocation.展开更多
In the signal processing for metrewave radar, the reflection paths of target echoes can cause severe error in the elevation estimation for the low-angle target tracking. The exact angles of the reflection paths are un...In the signal processing for metrewave radar, the reflection paths of target echoes can cause severe error in the elevation estimation for the low-angle target tracking. The exact angles of the reflection paths are unknown beforehand, and therefore, the reflection paths can not be suppressed easily. Therefore, in this article, an improved reflection paths suppression approach is presented. A block matrix aggregate is constructed based on the possible angles of the reflection paths. Combined with the beamforming-like processing, a generalized maximum likelihood estimation is derived to optimize the estimation. Moreover, the noise reduction method based on the Toeplitz covariance matrix is used for better performance. This approach is applied to the real data collected by the low-angle tracking radar with 8-channel vertical array. The experiment results show that the reflection effects are reduced and the accuracy of the elevation estimate is improved.展开更多
High-resolution X-ray diffractometry(HRXRD)was used to assess the quality of 6H-SiC crystals grown by sublimation method.The results show the occurrence of low-angle grain boundaries(LB)is close relative to the inclin...High-resolution X-ray diffractometry(HRXRD)was used to assess the quality of 6H-SiC crystals grown by sublimation method.The results show the occurrence of low-angle grain boundaries(LB)is close relative to the inclination of the crystal interface.At the central faceted region with 0°inclination the crystal is of high structural perfection.However,at the region close to the facet with less than 5°inclination LB occurs slightly and at the region close to the peripheral polytype ring with more than 5°inclination LB defect occurs heavily.The density of LB can be drastically reduced by decreasing radial temperature gradient that determines the shape of the crystal growth interface.展开更多
Abstract Low-angle faults include those occurring in thrust-nappe structures in a compressive setting and the detachment of metamorphic core complexes in an extensional setting. All low-angle faults have their own par...Abstract Low-angle faults include those occurring in thrust-nappe structures in a compressive setting and the detachment of metamorphic core complexes in an extensional setting. All low-angle faults have their own particularities. The low-angle fault plays an important role in controlling over some endogenetic metallic ore deposits. Based on studies of the Xiaoban gold deposit, Xinzhou gold deposit, and Longfengchang polymetallic ore deposit, and comparisons with other mines, the authors conclude the ore-controlling implications of low-angle faults as follows. (1) Because of high temperature and high pressure, as well as strong ductile deformation, the internal energy of the elements rises in the large-scale deep ductile low-angle faults, which causes the elements to activate and differentiate from the source rocks, forming ore-bearing hydrothermal solution, and bring mineralization to happen. (2) When rising from depths and flowing along the low-angle faults, the ore-bearing hydrothermal solution will alter and replace the tectonites in the fault zone. The rocks of the hanging side and the heading side differ in lithology, texture and structure, which results in changes or dissimilarities of the physical-chemical conditions. This destroys the balance of the hydrothermal solution system and causes the dissolved ore-forming elements to precipitate; as a result, a deposit is formed. Therefore, the meso-shallow ductile-brittle low-angle faults play the role of a geochemical interface in the process of mineralization. (3) Low-angle faults are often one of the important host structures.展开更多
In order to realize the elevation angle estimation for low-altitude targets at a low computational cost, a generalized multiple signal classification (GMUSIC) algorithm based on unitary transform is proposed, i.e., ...In order to realize the elevation angle estimation for low-altitude targets at a low computational cost, a generalized multiple signal classification (GMUSIC) algorithm based on unitary transform is proposed, i.e., the DU-GMUSlC algorithm. Firstly, the covariance matrix of received data is used to construct the Centro- Hermitian matrix. Then, the real-domain GMUSIC algorithm is used to implement the initial angle estimation, and the multipath attenuation coefficient is calculated in succession. Finally, the attenuation coefficient is taken into account in the GMUSIC method to carry out the secondary angle estimation which is beneficial to further improvement of the angle estimation accuracy. This method can meet requirements of low-angle accuracy as well as lower computational burden. Simulation results prove the correctness and effectiveness of the proposed algorithm. Moreover, field experiment data are used to further validate the effectiveness of this method.展开更多
The precipitation sequence of η(MgZn2) phase along low-angle grain boundaries in Al-Zn-Mg-Cu alloy was investigated by examining samples aged at 135 ℃ for various times from 5 min to 6 h. High resolution transmiss...The precipitation sequence of η(MgZn2) phase along low-angle grain boundaries in Al-Zn-Mg-Cu alloy was investigated by examining samples aged at 135 ℃ for various times from 5 min to 6 h. High resolution transmission electron microscopy (HRTEM) observations and energy dispersive X-ray spectroscopy (EDX) analysis indicate that the precipitation sequence of η phase along low-angle grain boundaries should be supersaturated solid solution (SSS)→vacancy-rich clusters (VRC)→GP Ⅱ zones→η'→η. Based on the theory of non-equilibrium grain boundary segregation (NGS) and non-equilibrium grain boundary co-segregation (NGCS), the excessive solute elements gradually segregate to the grain boundaries by the diffusion of the solute-vacancy complex during aging treatment. The grain boundary segregation plays an important role in the nucleation and growth of VRC, GP Ⅱ zones, η' phase as well as η phase.展开更多
Grain boundaries(GBs),as a prevalent structural characteristic,play a crucial role in the deformation of nanoporous metals with nanosized grains and ligaments.However,the fundamental understanding of GB-mediated defor...Grain boundaries(GBs),as a prevalent structural characteristic,play a crucial role in the deformation of nanoporous metals with nanosized grains and ligaments.However,the fundamental understanding of GB-mediated deformation is still lacking because the plastic behavior of discrete ligaments involving GBs remains to be unknown.Here,we report atomic scale visualizations of coupled GB dislocation climb and glide in nanoporous gold ligaments with low-angle GBs via in situ tensile straining inside a Cs-corrected transmission electron microscope.The zig-zag motion paths of GB dislocations are precisely determined by real-time tracking of the movements of dislocation cores.The concurrent climb and glide of the dislocation arrays are confined to a narrow GB region,greatly enhancing GB diffusion in the bicrystal ligament.Our findings of coupled dislocation climb and glide shine a light on the room-temperature deformation of nanoporous metals and provide a time-dependent atomic-level physical image for GB engineering.展开更多
基金This work is financed by the grants of the National Natural Science Foundation of China (Grant No 40272084, 40472101 and 40572123).
文摘The MohroCoulomb criterion has been widely used to explain formation of fractures. However, it fails to explain large strain deformation that widely occurs in nature. There is presently a new theory, the MEMC, which is mathematically expressed as Meff = ((σ1-σ3) L.sin 2α sin α)/2, where σ1-σ3 represents the yield strength of the related rock, L is a unit length and a is the angle between σ1 and deformation bands. This criterion demonstrates that the maximum value appears at angles of ±54.7° to σ1 and there is a slight difference in the moment in the range of 55°±10°. The range covers the whole observations available from nature and experiments. Its major implications include: (1) it can be used to determine the stress state when the related deformation features formed; (2) it provides a new approach to determine the Wk of the related ductile shear zone if only the ratio of the vorticity and strain rate remains fixed; (3) It can be used to explain (a) the obtuse angle in the contraction direction of conjugate kink-bands and extensional crenulation cleavages, (b) formation of low-angle normal faults and high-angle reverse faults, (c) lozenge ductile shear zones in basement terranes, (d) some crocodile structures in seismic profiles and (e) detachment folds in foreland basins.
基金supported by National Natural Science Foundation of China (Grant Nos.90714006 and 40672146)the Deep Exploration Technology and Experimentation Program of China (Grant No.SinoProbe-08-01-03)
文摘The Louzidian low-angle ductile shear detachment zone at the south of Chifeng is a SE-dipping, low-angle normal fault system. It is composed mainly of ductile shear zone, ductile-brittle shear zone and brittle fault zone. The ductile shear zone consists of, from bottom to top, mylonitic rocks, protomylonites and mylonites. Finite strain measurement of feldspar strain markers from those rocks using the Rf /φ method shows that strain intensities (Es) of the mylonite at core of the ductile shear zone (Es=0.65-0.96) are higher than those of the mylonitic rocks close to the granite intrusions (Es=0.59-0.62) and of the protomylonites at top of the ductile shear zone (Es= 0.47-0.70), and the strain types of the protomylonites and mylonties are elongate strain and plane-flattening strain, respectively. The kinematic vorticity values (Wk) estimated by the Polar Mohr diagram and the Rigid Grain Net range from 0.81 to 0.90 with an average of 0.85 for the protomylonites, and from 0.53 to 0.80 with 0.66 on average for the mylonites; Wk values of the extensional crenulation cleavage, i.e., C′, estimated by C′ method range from 0.63 to 0.37 with an average of 0.50. The angles between the maximum principal stress and shearing direction determined using the Maximum effective moment criterion evolved from 61° to 69° and to 75°, and finally normal to shearing direction. The results of strain and kinematic vorticity measurements suggest that high strain corresponds to low kinematic vorticity. Kinematic vorticity measurements show that the Louzidian low-angle ductile shear detachment zone is a result of a combination of simple-dominated general shearing at the early stage and pure-dominated general shearing at the late stage. All these, together with isotope geochronology and regional tectonic background, suggest that the Louzidian ductile shear detachment zone resulted from a combination of crust extension and magma intrusion. The model of simple shear at the early stage and pure shear at the late stage in the formation of m
基金Financial supports from the National Key Research and Development Program of China (No. 2017YFA0204401)Shenyang National Laboratory for Materials Science (No. 2015RP04)
文摘Nanolaminated structures composed of low-angle grain boundaries(LAGBs) possess high thermal stability. In this paper, a gradient nanolaminated(GNL) surface layer with smooth finish was fabricated on an interstitial-free steel by means of surface mechanical rolling treatment. Microstructural observations demonstrated that the average lamellar thickness is about 80 nm in the topmost surface layer and increases with increasing depth. High thermal stability was confirmed in the GNL surface layer after annealing at 500℃. Diffusion measurements showed that effective diffusivity of Cr in GNL layer is 4–6 orders of magnitude higher than lattice diffusivity within the temperature range from 400 to 500℃. This might be attributed to numerous LAGBs or dislocation structures with a higher energy state in the GNL surface layer. This work demonstrates the possibility to advanced chromizing(or other surface alloying)processes of steels with formation of GNL surface layer, so that a thicker alloyed surface layer with a stable nanostructure is achieved.
基金supported by the Major National Science and Technology Programs,China (Nos. 2016ZX05026-003-001 and 2011ZX05023-001-015)
文摘Low-angle normal faults(dip<30°,LANFs)are widespread in the northern margin of the South China Sea where the maximum crust thickness is approximately 30.0 km.Based on 3 D seismic survey data and drilling wells in the Enping sag,evidences for LANFs that initially formed at high-angles are discussed.After a detailed investigation of extensional fault system and description of 3 D fault geometry,the initial fault dips under the model of distributed vertical simple shear are also calculated.The results indicate that the present-day dip angles of the LANFs are in the range of 12°to 29°,and the initial fault dip angles are in the range of 39°to 49°.Deep seismic imaging suggests that the upper crust in the footwall block of the LANFs was tilted at an angle of ~14°to 22°due to the isostatic rebound during rifting.Moreover,the temporal and spatial sequences of the lateral growth of the LANFs have been investigated by the seismic interpretation of four isochronous stratigraphic interfaces,which demonstrates that two individual fault segments propagated towards each other and subsequently,were hard-linked during the Early Eocene.
基金supported by the National Nature Science Foundation of China(No.62001506).
文摘The low-angle tracking in multipath interference is a challenging problem for the Very High Frequency(VHF)radar.The colocated Multi-Input Multi-Output(MIMO)technique can remedy such a defect.In this paper,a Joint Beam-Target Assignment and Power Allocation(JBTAPA)strategy is proposed for the VHF-MIMO radar network tracking low-angle targets.The core of the JBTAPA strategy is to improve the worst tracking accuracy among multiple targets by assigning appropriate beams to targets and allocating the power resource in each beam using the feedback information in the tracking cycle.Taking into account the transmit multipath and receive multipath,we derive the Cramer-Rao Lower Bound(CRLB)on angle estimate,which is then incor-porated in the Predicted Conditional CRLB(PC-CRLB).A more accurate and consistent lower bound is provided as the optimization metric since the PC-CRLB is based on the most recently real-ized measurements.A two-stage-based technique is proposed to solve the JBTAPA problem,which is originally NP-hard.Simulation results verify the effectiveness and efficiency of the proposed method.The results also imply that the target reflectivity plays one of the important roles in resource allocation.
文摘In the signal processing for metrewave radar, the reflection paths of target echoes can cause severe error in the elevation estimation for the low-angle target tracking. The exact angles of the reflection paths are unknown beforehand, and therefore, the reflection paths can not be suppressed easily. Therefore, in this article, an improved reflection paths suppression approach is presented. A block matrix aggregate is constructed based on the possible angles of the reflection paths. Combined with the beamforming-like processing, a generalized maximum likelihood estimation is derived to optimize the estimation. Moreover, the noise reduction method based on the Toeplitz covariance matrix is used for better performance. This approach is applied to the real data collected by the low-angle tracking radar with 8-channel vertical array. The experiment results show that the reflection effects are reduced and the accuracy of the elevation estimate is improved.
基金Project supported National Natural Science Foundation of China(60025409 and 50472068)National"863"High Technology Plan(2001AA311080)
文摘High-resolution X-ray diffractometry(HRXRD)was used to assess the quality of 6H-SiC crystals grown by sublimation method.The results show the occurrence of low-angle grain boundaries(LB)is close relative to the inclination of the crystal interface.At the central faceted region with 0°inclination the crystal is of high structural perfection.However,at the region close to the facet with less than 5°inclination LB occurs slightly and at the region close to the peripheral polytype ring with more than 5°inclination LB defect occurs heavily.The density of LB can be drastically reduced by decreasing radial temperature gradient that determines the shape of the crystal growth interface.
文摘Abstract Low-angle faults include those occurring in thrust-nappe structures in a compressive setting and the detachment of metamorphic core complexes in an extensional setting. All low-angle faults have their own particularities. The low-angle fault plays an important role in controlling over some endogenetic metallic ore deposits. Based on studies of the Xiaoban gold deposit, Xinzhou gold deposit, and Longfengchang polymetallic ore deposit, and comparisons with other mines, the authors conclude the ore-controlling implications of low-angle faults as follows. (1) Because of high temperature and high pressure, as well as strong ductile deformation, the internal energy of the elements rises in the large-scale deep ductile low-angle faults, which causes the elements to activate and differentiate from the source rocks, forming ore-bearing hydrothermal solution, and bring mineralization to happen. (2) When rising from depths and flowing along the low-angle faults, the ore-bearing hydrothermal solution will alter and replace the tectonites in the fault zone. The rocks of the hanging side and the heading side differ in lithology, texture and structure, which results in changes or dissimilarities of the physical-chemical conditions. This destroys the balance of the hydrothermal solution system and causes the dissolved ore-forming elements to precipitate; as a result, a deposit is formed. Therefore, the meso-shallow ductile-brittle low-angle faults play the role of a geochemical interface in the process of mineralization. (3) Low-angle faults are often one of the important host structures.
基金supported by the National Natural Science Foundation of China(61101224)the Research on the Altitude Measurement Method for VHF Radar under the Complicated Environment
文摘In order to realize the elevation angle estimation for low-altitude targets at a low computational cost, a generalized multiple signal classification (GMUSIC) algorithm based on unitary transform is proposed, i.e., the DU-GMUSlC algorithm. Firstly, the covariance matrix of received data is used to construct the Centro- Hermitian matrix. Then, the real-domain GMUSIC algorithm is used to implement the initial angle estimation, and the multipath attenuation coefficient is calculated in succession. Finally, the attenuation coefficient is taken into account in the GMUSIC method to carry out the secondary angle estimation which is beneficial to further improvement of the angle estimation accuracy. This method can meet requirements of low-angle accuracy as well as lower computational burden. Simulation results prove the correctness and effectiveness of the proposed algorithm. Moreover, field experiment data are used to further validate the effectiveness of this method.
基金Project(51071122)supported by the National Natural Science Foundation of ChinaProject(B08040)supported by the Program of Introducing Talents of Discipline to Universities,China("111"Project)
文摘The precipitation sequence of η(MgZn2) phase along low-angle grain boundaries in Al-Zn-Mg-Cu alloy was investigated by examining samples aged at 135 ℃ for various times from 5 min to 6 h. High resolution transmission electron microscopy (HRTEM) observations and energy dispersive X-ray spectroscopy (EDX) analysis indicate that the precipitation sequence of η phase along low-angle grain boundaries should be supersaturated solid solution (SSS)→vacancy-rich clusters (VRC)→GP Ⅱ zones→η'→η. Based on the theory of non-equilibrium grain boundary segregation (NGS) and non-equilibrium grain boundary co-segregation (NGCS), the excessive solute elements gradually segregate to the grain boundaries by the diffusion of the solute-vacancy complex during aging treatment. The grain boundary segregation plays an important role in the nucleation and growth of VRC, GP Ⅱ zones, η' phase as well as η phase.
基金supported by the National Natural Science Foundation of China(Nos.52173224,52130105,and 51821001)Natural Science Foundation of Shanghai(No.21ZR1431200)the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning.
文摘Grain boundaries(GBs),as a prevalent structural characteristic,play a crucial role in the deformation of nanoporous metals with nanosized grains and ligaments.However,the fundamental understanding of GB-mediated deformation is still lacking because the plastic behavior of discrete ligaments involving GBs remains to be unknown.Here,we report atomic scale visualizations of coupled GB dislocation climb and glide in nanoporous gold ligaments with low-angle GBs via in situ tensile straining inside a Cs-corrected transmission electron microscope.The zig-zag motion paths of GB dislocations are precisely determined by real-time tracking of the movements of dislocation cores.The concurrent climb and glide of the dislocation arrays are confined to a narrow GB region,greatly enhancing GB diffusion in the bicrystal ligament.Our findings of coupled dislocation climb and glide shine a light on the room-temperature deformation of nanoporous metals and provide a time-dependent atomic-level physical image for GB engineering.