期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合思维链和低秩自适应微调的方面情感三元组抽取
1
作者 曾碧卿 陈鹏飞 姚勇涛 《计算机工程》 CAS CSCD 北大核心 2024年第7期53-62,共10页
方面情感三元组抽取(ASTE)任务是方面级情感分析的重要子任务之一,传统的监督学习方法在该任务上取得了SOTA或接近SOTA的效果。然而,随着深度神经网络的发展,生成式大型语言模型(LLM)为该任务带来了更多的可能性。目前大多数工作都是直... 方面情感三元组抽取(ASTE)任务是方面级情感分析的重要子任务之一,传统的监督学习方法在该任务上取得了SOTA或接近SOTA的效果。然而,随着深度神经网络的发展,生成式大型语言模型(LLM)为该任务带来了更多的可能性。目前大多数工作都是直接对LLM进行微调,但是忽略了LLM的幻觉现象,导致性能下降。提出一种融合思维链技术和LLM低秩自适应(Lo RA)微调LFC方法,实现生成式的ASTE新范式,以提升任务性能。在LFC中,首先基于思维链技术,通过人工构造少量推理样本,并利用LLM生成具有推理结构的增强数据集。将增强数据集用于微调Chat GLM3-6B模型的学习。在微调过程中,采用Lo RA微调技术提高在低资源环境下适配ASTE任务的效果。实验结果表明,LFC方法相比于最优的基线模型在Res14、Lap14、Res15和Res164个数据集上的F1值分别提升8.37、12.31、11.07和8.43个百分点,该方法不仅能够准确地识别三元组,而且在一定程度上优化了LLM的幻觉现象。 展开更多
关键词 方面情感三元组抽取 大型语言模型 低秩自适应微调 思维链 提示学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部