期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于堆叠边缘感知模块的显著性目标检测
被引量:
1
1
作者
杨佳信
胡晓
向俊将
《模式识别与人工智能》
EI
CSCD
北大核心
2020年第10期906-916,共11页
现有显著性目标检测算法对边缘感知的效果不理想.因此,为了有效利用高层语义信息及低层纹理信息,文中提出基于堆叠边缘感知模块的显著性目标检测算法.采用多尺度骨干网络(Res2Net)作为主干网络提取图像的多尺度、多目标的显著性特征.堆...
现有显著性目标检测算法对边缘感知的效果不理想.因此,为了有效利用高层语义信息及低层纹理信息,文中提出基于堆叠边缘感知模块的显著性目标检测算法.采用多尺度骨干网络(Res2Net)作为主干网络提取图像的多尺度、多目标的显著性特征.堆叠边缘感知模块以非对称性方式融合图像高低层信息,增强显著性目标区域.网络输出显著性目标的检测结果.在5个公开数据集上的实验表明,文中算法检测结果较优,同时,在客观评估指标和主观视觉效果上也较优.
展开更多
关键词
显著性目标检测(SOD)
高层语义信息
低层纹理信息
边缘感知模块
下载PDF
职称材料
题名
基于堆叠边缘感知模块的显著性目标检测
被引量:
1
1
作者
杨佳信
胡晓
向俊将
机构
广州大学电子与通信工程学院
出处
《模式识别与人工智能》
EI
CSCD
北大核心
2020年第10期906-916,共11页
基金
国家自然科学基金项目(No.62076075)资助。
文摘
现有显著性目标检测算法对边缘感知的效果不理想.因此,为了有效利用高层语义信息及低层纹理信息,文中提出基于堆叠边缘感知模块的显著性目标检测算法.采用多尺度骨干网络(Res2Net)作为主干网络提取图像的多尺度、多目标的显著性特征.堆叠边缘感知模块以非对称性方式融合图像高低层信息,增强显著性目标区域.网络输出显著性目标的检测结果.在5个公开数据集上的实验表明,文中算法检测结果较优,同时,在客观评估指标和主观视觉效果上也较优.
关键词
显著性目标检测(SOD)
高层语义信息
低层纹理信息
边缘感知模块
Keywords
Salient
Object
Detection(SOD)
High-
level
Semantic
information
low
-
level
texture
information
Edge-Aware
Module
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于堆叠边缘感知模块的显著性目标检测
杨佳信
胡晓
向俊将
《模式识别与人工智能》
EI
CSCD
北大核心
2020
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部