期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
低过采样数字调制信号的多尺度一维卷积神经网络解调器
1
作者 陈显敏 符杰林 《计算机应用与软件》 北大核心 2024年第5期113-117,共5页
针对应用深度学习方法对数字调制信号进行解调时过采样要求较高的问题,设计低过采样的多尺度一维卷积神经网络数字解调器。该解调器可以在与传统解调器相同的过采样条件下,对BPSK、4-QAM、8-QAM、16-QAM四种数字调制信号进行解调,并能... 针对应用深度学习方法对数字调制信号进行解调时过采样要求较高的问题,设计低过采样的多尺度一维卷积神经网络数字解调器。该解调器可以在与传统解调器相同的过采样条件下,对BPSK、4-QAM、8-QAM、16-QAM四种数字调制信号进行解调,并能保证传统解调方法相同的误码性能。仿真结果表明,在高斯和Rayleigh衰落信道下,给出的数字调制信号解调器可以在保证解调误码性能的同时,减少了对采样倍数的要求,降低了神经网络结构的复杂性。 展开更多
关键词 低采样倍数 解调 多尺度一维卷积神经网络 BPSK和M-QAM
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部