Demand response(DR)and wind power are beneficial to low-carbon electricity to deal with energy and environmental problems.However,the uncertain wind power generation(WG)which has anti-peaking characteristic would be h...Demand response(DR)and wind power are beneficial to low-carbon electricity to deal with energy and environmental problems.However,the uncertain wind power generation(WG)which has anti-peaking characteristic would be hard to exert its ability in carbon reduction.This paper introduces DR into traditional unit commitment(UC)strategy and proposes a multi-objective day-ahead optimal scheduling model for wind farm integrated power systems,since incentive-based DR can accommodate excess wind power and can be used as a source of system spinning reserve to alleviate generation side reserve pressure during both peak and valley load periods.Firstly,net load curve is obtained by forecasting load and wind power output.Then,considering the behavior of DR,a day-ahead optimal dispatching scheme is proposed with objectives of minimum generating cost and carbon emission.Non-dominated sorting genetic algorithm-II(NSGA-II)and satisfaction-maximizing method are adopted to solve the multi-objective model with Pareto fronts and eclectic decision obtained.Finally,a case study is carried out to demonstrate that the approach can achieve economic and environmental aims and DR can help to accommodate the wind power.展开更多
The high-frequency interference exists obviously in low strain integrity testing of large-diameter pipe pile when a transientpoint load is applied. An analytical solution of vertical vibratory response of large-diamet...The high-frequency interference exists obviously in low strain integrity testing of large-diameter pipe pile when a transientpoint load is applied. An analytical solution of vertical vibratory response of large-diameter pipe piles in low strain testing isdeduced in this paper. The analytical solution is verified by both numerical simulation and model test results. The time-domainvelocity responses on pile top are analyzed. The calculation results indicate that the time-domain responses at various pointssuffer different high-frequency interferences, thus the peak values and phases of different points are different. The influence ofvibratory modes on high-frequency interference is analyzed. It is found that the high-frequency interference at 90° point main-ly derives from the second flexural mode, but for other points it mainly originates from the first flexural mode. The factors af-fecting the frequency and peak value of interference waves have been investigated in this study. The results indicate that thelarger radius angle between the receiving and 90° points leads to greater peak value of high frequency wave crest. The leasthigh-frequency interference is detected at the angle of 90°. The frequency of interference waves is decreased with the increaseof pile radius, while the peak value is almost constant. The frequency is also related to pile modulus, i.e. the larger pile modu-lus results in greater frequency. The peak value varies with impulse width and soil resistance, i.e., the wider impulse width andlarger soil resistance cause smaller peak value. In conclusion, the frequency of interference waves is dependent on the geomet-rical and mechanics characteristics of the piles such as pile radius and modulus, but independent of the external conditionssuch as impulse width and soil resistance. On the other hand, the peak value of interference waves is mainly dependent on theexternal conditions but independent of the geometrical and mechanics characteristics of the piles. In practice, some externalmeasures shoul展开更多
Coal is the world's most abundant energy source because of its abundance and relatively low cost. Due to the scarcity in the supply of high-grade coal, it is necessary to use low-.grade coal for fulfilling energy dem...Coal is the world's most abundant energy source because of its abundance and relatively low cost. Due to the scarcity in the supply of high-grade coal, it is necessary to use low-.grade coal for fulfilling energy demands of modern civilization. However, due to ItS high ash and moisture content, low-grade coal exerts the substantial impact on their consumption like pyrolysis, liquefaction, gasification and combus- tion process. The present research aimed to develop the efficient technique for the production of clean coal by optimizing the operating parameters with the help of response surface methodology. The effect of three independent variables such as hydrofluoric acid (HF) concentration (10-20% by vo!ume ),. temper- ature (60-100 ~C), and time (90-180 min), for ash reduction from the low-grade coal was Investigated.. A quadratic model was proposed to correlate the independent variables for maximum ash reduction at the optimum process condition by using central composite design (CC.D)method. The study reveals that HF concentration was the most effective parameter for ash reduction in comparison with time and temper- ature. It may be due to the higher F-statistics value for HF concentration, which effects to large extent of ash reduction. The characterization of coal was evaluated by Fourier transform infrared spectroscopy (FTIR) analysis and Field-emission scanning electron microscopy with energy-dispersive X-ray (FESEM- EDX) analysis for confirmation of the ash reduction.展开更多
基金This work is supported by National Natural Science Foundation of China(No.51277015).
文摘Demand response(DR)and wind power are beneficial to low-carbon electricity to deal with energy and environmental problems.However,the uncertain wind power generation(WG)which has anti-peaking characteristic would be hard to exert its ability in carbon reduction.This paper introduces DR into traditional unit commitment(UC)strategy and proposes a multi-objective day-ahead optimal scheduling model for wind farm integrated power systems,since incentive-based DR can accommodate excess wind power and can be used as a source of system spinning reserve to alleviate generation side reserve pressure during both peak and valley load periods.Firstly,net load curve is obtained by forecasting load and wind power output.Then,considering the behavior of DR,a day-ahead optimal dispatching scheme is proposed with objectives of minimum generating cost and carbon emission.Non-dominated sorting genetic algorithm-II(NSGA-II)and satisfaction-maximizing method are adopted to solve the multi-objective model with Pareto fronts and eclectic decision obtained.Finally,a case study is carried out to demonstrate that the approach can achieve economic and environmental aims and DR can help to accommodate the wind power.
基金supported by the National Natural Science Foundation of China(Grant No.51008115)the Provincial Science Foundation of Jiangsu(Grant No.BK2008040)
文摘The high-frequency interference exists obviously in low strain integrity testing of large-diameter pipe pile when a transientpoint load is applied. An analytical solution of vertical vibratory response of large-diameter pipe piles in low strain testing isdeduced in this paper. The analytical solution is verified by both numerical simulation and model test results. The time-domainvelocity responses on pile top are analyzed. The calculation results indicate that the time-domain responses at various pointssuffer different high-frequency interferences, thus the peak values and phases of different points are different. The influence ofvibratory modes on high-frequency interference is analyzed. It is found that the high-frequency interference at 90° point main-ly derives from the second flexural mode, but for other points it mainly originates from the first flexural mode. The factors af-fecting the frequency and peak value of interference waves have been investigated in this study. The results indicate that thelarger radius angle between the receiving and 90° points leads to greater peak value of high frequency wave crest. The leasthigh-frequency interference is detected at the angle of 90°. The frequency of interference waves is decreased with the increaseof pile radius, while the peak value is almost constant. The frequency is also related to pile modulus, i.e. the larger pile modu-lus results in greater frequency. The peak value varies with impulse width and soil resistance, i.e., the wider impulse width andlarger soil resistance cause smaller peak value. In conclusion, the frequency of interference waves is dependent on the geomet-rical and mechanics characteristics of the piles such as pile radius and modulus, but independent of the external conditionssuch as impulse width and soil resistance. On the other hand, the peak value of interference waves is mainly dependent on theexternal conditions but independent of the geometrical and mechanics characteristics of the piles. In practice, some externalmeasures shoul
文摘Coal is the world's most abundant energy source because of its abundance and relatively low cost. Due to the scarcity in the supply of high-grade coal, it is necessary to use low-.grade coal for fulfilling energy demands of modern civilization. However, due to ItS high ash and moisture content, low-grade coal exerts the substantial impact on their consumption like pyrolysis, liquefaction, gasification and combus- tion process. The present research aimed to develop the efficient technique for the production of clean coal by optimizing the operating parameters with the help of response surface methodology. The effect of three independent variables such as hydrofluoric acid (HF) concentration (10-20% by vo!ume ),. temper- ature (60-100 ~C), and time (90-180 min), for ash reduction from the low-grade coal was Investigated.. A quadratic model was proposed to correlate the independent variables for maximum ash reduction at the optimum process condition by using central composite design (CC.D)method. The study reveals that HF concentration was the most effective parameter for ash reduction in comparison with time and temper- ature. It may be due to the higher F-statistics value for HF concentration, which effects to large extent of ash reduction. The characterization of coal was evaluated by Fourier transform infrared spectroscopy (FTIR) analysis and Field-emission scanning electron microscopy with energy-dispersive X-ray (FESEM- EDX) analysis for confirmation of the ash reduction.