The effects of Cr, Ni and Cu on the corrosion behavior of low carbon microalloying steel in a CI- containing environment were investigated. The results revealed that the corrosion process could be divided into the ini...The effects of Cr, Ni and Cu on the corrosion behavior of low carbon microalloying steel in a CI- containing environment were investigated. The results revealed that the corrosion process could be divided into the initial stage in which the corrosion rate increased with accumulation of corrosion products and the later stage in which homogeneous and compact inner rust layers started to protect steel substrate out of corrosion mediums. The results of X-ray diffraction (XRD) indicated that the rust layers of the three-group steels (Cr, Cr-Ni and Cr-Ni-Cu steels) were composed of α-FeOOH, β-FeOOH, γ-FeOOH, Fe3O4 and large amounts of amorphous compounds. The content of amorphous compounds of Cr-Ni-Cu steel was about 2%-3% more than that of Cr-Ni steel. The results of electron probe microanalysis (EPMA) showed that Cr concentrated mainly in the inner region of the rust of Cr-Ni-Cu steel, inner/outer interface especially, whereas Ni was uniformly distributed all over the rust and Cu was noticed rarely after 73 wet/dry cycles. The addition of Cr and Ni was beneficial to the formation of dense and compact inner rust layer, which was the most important reason for the improvement of corrosion resistance of experimental steel.展开更多
Grain refinement is one of the effective methods to develop new generation low carbon microalloyed steels possessing excellent combination of mechanical properties. The microstructural evolution and ferrite grain refi...Grain refinement is one of the effective methods to develop new generation low carbon microalloyed steels possessing excellent combination of mechanical properties. The microstructural evolution and ferrite grain refinement at the deformation temperature of 865℃, above Ar3, with different strain rates were investigated using single pass isothermal hot compression experiments for a low carbon Nb-Ti microalloyed steel. The physical processes that occurred during deformation were discussed by observing the optical microstructure and analyzing the true stress-true strain responses. At strain rates of 0.001 and 0.01s^-1, there is no evidence of work hardening behavior during hot deformation and strain-induced transformation (SIT) leads to dynamic flow softening in flow curves. Optical microscopy observation shows that ultrafine and equiaxed ferrite with grain sizes of 2μm can be obtained by applying deformation with strain rate of 0.1 s^-1 due to SIT just after deformation. Furthermore, increasing the strain rate from 0.001 to 0.1 s^-1 reduces both the grain size of the equiaxed ferrite and the amount of deformed ferrite.展开更多
基金supported by the High Technology Research and Development Program of China (No. 2007AA03Z504)the Fundamental Research Funds for the Central Universities (No. N100507002)
文摘The effects of Cr, Ni and Cu on the corrosion behavior of low carbon microalloying steel in a CI- containing environment were investigated. The results revealed that the corrosion process could be divided into the initial stage in which the corrosion rate increased with accumulation of corrosion products and the later stage in which homogeneous and compact inner rust layers started to protect steel substrate out of corrosion mediums. The results of X-ray diffraction (XRD) indicated that the rust layers of the three-group steels (Cr, Cr-Ni and Cr-Ni-Cu steels) were composed of α-FeOOH, β-FeOOH, γ-FeOOH, Fe3O4 and large amounts of amorphous compounds. The content of amorphous compounds of Cr-Ni-Cu steel was about 2%-3% more than that of Cr-Ni steel. The results of electron probe microanalysis (EPMA) showed that Cr concentrated mainly in the inner region of the rust of Cr-Ni-Cu steel, inner/outer interface especially, whereas Ni was uniformly distributed all over the rust and Cu was noticed rarely after 73 wet/dry cycles. The addition of Cr and Ni was beneficial to the formation of dense and compact inner rust layer, which was the most important reason for the improvement of corrosion resistance of experimental steel.
文摘Grain refinement is one of the effective methods to develop new generation low carbon microalloyed steels possessing excellent combination of mechanical properties. The microstructural evolution and ferrite grain refinement at the deformation temperature of 865℃, above Ar3, with different strain rates were investigated using single pass isothermal hot compression experiments for a low carbon Nb-Ti microalloyed steel. The physical processes that occurred during deformation were discussed by observing the optical microstructure and analyzing the true stress-true strain responses. At strain rates of 0.001 and 0.01s^-1, there is no evidence of work hardening behavior during hot deformation and strain-induced transformation (SIT) leads to dynamic flow softening in flow curves. Optical microscopy observation shows that ultrafine and equiaxed ferrite with grain sizes of 2μm can be obtained by applying deformation with strain rate of 0.1 s^-1 due to SIT just after deformation. Furthermore, increasing the strain rate from 0.001 to 0.1 s^-1 reduces both the grain size of the equiaxed ferrite and the amount of deformed ferrite.