The effect of tempering temperature on the microstructure and mechanical properties of ultra-high strength, copperbearing, low-carbon bainitic steel has been investigated in the experiment. The results showed that the...The effect of tempering temperature on the microstructure and mechanical properties of ultra-high strength, copperbearing, low-carbon bainitic steel has been investigated in the experiment. The results showed that the microstructure was mainly the laths of bainite in the as-quenched steel. The bainitic laths were restored and combined after the steel tempered at various tempera- tures. There were rnartensite/austenite (M/A) islands and numerous dislocations within and between the bainitic laths, while very t-me precipitates of ε-Cu were also observed within the laths. With increasing the tempered temperature from 400 to 600℃, the yield strength (YS) increased from 877 to 957 MPa, whereas the ultimate tensile strength (UTS) decreased from 1020 to 985 MPa. The Charpy V-notch (CVN) varied from 68.5 to 42 J, and the value was minimal for the steel tempered at 500℃. 2008 University of Science and Technology Beijing. All rights reserved.展开更多
The 1,000 MPa ultra-high strength hot-rolled plate steel with low-carbon bainitic microstructure was developed in the laboratory for coal mine refuge chamber. The static recrystallization behavior, microstructure evol...The 1,000 MPa ultra-high strength hot-rolled plate steel with low-carbon bainitic microstructure was developed in the laboratory for coal mine refuge chamber. The static recrystallization behavior, microstructure evolution, and mechanical properties of this hot-rolled plate steel were investigated by the hot compression, continuous cooling trans- formation, and tensile deformation test. The results show that the developed steel has excellent mechanical properties at both room and elevated temperature, and its microstructure mainly consists of lath bainite, granular bainite, and ferrite after thermal-mechanical control process (TMCP). The ultra-high strength plate steel is obtained by the TMCP process in hot rolling, strengthened by bainitic transformation, microstructure refinement, and precipitation of alloying elements such as Nb, Ti, Mo, and Cu. The experimental steel has relatively low welding crack sensitivity index and high atmospheric corrosion resistance index. Therefore, the developed steel has a good balance of strength and ductility both at room and elevated temperature, weldability and corrosion resistance, and it can suffice for the basic demands for materials in the manufacture of coal mine refuge chamber.展开更多
The effect of austempering time after the bainitic transformation on the microstructure and property in a low-carbon bainite steel was investigated by metallography and dilatometry. The results showed that by prolongi...The effect of austempering time after the bainitic transformation on the microstructure and property in a low-carbon bainite steel was investigated by metallography and dilatometry. The results showed that by prolonging the austempering time after the bainite transformation, the amount of large-size martensite/austenite islands decreased, but no significant change of the amount and morphology of bainite were observed. In addition, more austenite with a high carbon content was retained by prolonging the holding time at the bainite transformation temperature.Moreover, with a longer holding time, the elongation was improved at the expense of a small decrease in tensile strength. Finally, the Avrami equation B(RF) = 1-exp(-0.0499 × t^0.7616) for bainite reaction at 350℃ was obtained for the tested steel. The work provided a reference for tailoring the properties of low-carbon steels.展开更多
The present studies are aimed at understanding the effect of cooling rate and prior strain on the evolution of morphology,orientation relationship (OR) and variant selection in pipeline steel with 0.09wt% niobium.In i...The present studies are aimed at understanding the effect of cooling rate and prior strain on the evolution of morphology,orientation relationship (OR) and variant selection in pipeline steel with 0.09wt% niobium.In identical prior austenite grain,all products include granular bainite(GB) by coherent transformation,keep orientation relationship (OR) with parent austenite.Fast cooling and large deformation below T nr both can raise drive force of coherent transformation and weaken variants selection,and it can generate higher frequency of high angle boundaries (HABs) (≥15degree).Moreover,large deformation by few passes below T nr can accelerate nucleation of ferrite grains at the austenite boundary by incoherent transformation.These fine grains haven’t OR with prior austenite grain in any side of boundary,and exhibit significant misorientations between themselves.展开更多
Two kinds of steels (YP960 and YP690) with low carbon bainite structure were designed, and their flow stress and strain hardening exponents were studied. The results showed that, when Hollomon relation was applied t...Two kinds of steels (YP960 and YP690) with low carbon bainite structure were designed, and their flow stress and strain hardening exponents were studied. The results showed that, when Hollomon relation was applied to descrihe the flow stress, there were significanl errors between the experimental and calculated points in specimens tempered below 400 ℃, while a high precision was ohserved in samples tempered above 400℃. Whereas, the modijied Voce relation could effectively predici the flow stress as well as the strain hardening exponent at different tempe ring temperatures, which was verified by unbiased estimators such as maximum relative error (MRXE) and average ahsolute relative error (AARE). Besides, the modified Voee relation was also applied to estimate the maximum uniform strain, and the correlation coefficients (R) between the experimental data and calculated maximum uniform strain were more than 0.91. The high correlation coefficients indicated that the modified Vote relation could effec lively predict the uniform deformation ability of high strength steels with low carbon bainite structure at different tempering temperatures.展开更多
文摘The effect of tempering temperature on the microstructure and mechanical properties of ultra-high strength, copperbearing, low-carbon bainitic steel has been investigated in the experiment. The results showed that the microstructure was mainly the laths of bainite in the as-quenched steel. The bainitic laths were restored and combined after the steel tempered at various tempera- tures. There were rnartensite/austenite (M/A) islands and numerous dislocations within and between the bainitic laths, while very t-me precipitates of ε-Cu were also observed within the laths. With increasing the tempered temperature from 400 to 600℃, the yield strength (YS) increased from 877 to 957 MPa, whereas the ultimate tensile strength (UTS) decreased from 1020 to 985 MPa. The Charpy V-notch (CVN) varied from 68.5 to 42 J, and the value was minimal for the steel tempered at 500℃. 2008 University of Science and Technology Beijing. All rights reserved.
基金supported by the National Natural Science Foundation of China (Nos. 51174057 and 51274062)the National High Technology Research and Development Program of China (No. 2012AA03A503)Research Fund for the Doctoral Program of Higher Education of China (No. 20130042110040)
文摘The 1,000 MPa ultra-high strength hot-rolled plate steel with low-carbon bainitic microstructure was developed in the laboratory for coal mine refuge chamber. The static recrystallization behavior, microstructure evolution, and mechanical properties of this hot-rolled plate steel were investigated by the hot compression, continuous cooling trans- formation, and tensile deformation test. The results show that the developed steel has excellent mechanical properties at both room and elevated temperature, and its microstructure mainly consists of lath bainite, granular bainite, and ferrite after thermal-mechanical control process (TMCP). The ultra-high strength plate steel is obtained by the TMCP process in hot rolling, strengthened by bainitic transformation, microstructure refinement, and precipitation of alloying elements such as Nb, Ti, Mo, and Cu. The experimental steel has relatively low welding crack sensitivity index and high atmospheric corrosion resistance index. Therefore, the developed steel has a good balance of strength and ductility both at room and elevated temperature, weldability and corrosion resistance, and it can suffice for the basic demands for materials in the manufacture of coal mine refuge chamber.
基金the financial supports from the National Natural Science Foundation of China(NSFC)(Nos.51874216 and 51704217)the Major Projects of Technology Innovation of Hubei Province,China(No.2017AAA116)
文摘The effect of austempering time after the bainitic transformation on the microstructure and property in a low-carbon bainite steel was investigated by metallography and dilatometry. The results showed that by prolonging the austempering time after the bainite transformation, the amount of large-size martensite/austenite islands decreased, but no significant change of the amount and morphology of bainite were observed. In addition, more austenite with a high carbon content was retained by prolonging the holding time at the bainite transformation temperature.Moreover, with a longer holding time, the elongation was improved at the expense of a small decrease in tensile strength. Finally, the Avrami equation B(RF) = 1-exp(-0.0499 × t^0.7616) for bainite reaction at 350℃ was obtained for the tested steel. The work provided a reference for tailoring the properties of low-carbon steels.
文摘The present studies are aimed at understanding the effect of cooling rate and prior strain on the evolution of morphology,orientation relationship (OR) and variant selection in pipeline steel with 0.09wt% niobium.In identical prior austenite grain,all products include granular bainite(GB) by coherent transformation,keep orientation relationship (OR) with parent austenite.Fast cooling and large deformation below T nr both can raise drive force of coherent transformation and weaken variants selection,and it can generate higher frequency of high angle boundaries (HABs) (≥15degree).Moreover,large deformation by few passes below T nr can accelerate nucleation of ferrite grains at the austenite boundary by incoherent transformation.These fine grains haven’t OR with prior austenite grain in any side of boundary,and exhibit significant misorientations between themselves.
基金Item Sponsored by National Natural Science Foundation of China(51274036)
文摘Two kinds of steels (YP960 and YP690) with low carbon bainite structure were designed, and their flow stress and strain hardening exponents were studied. The results showed that, when Hollomon relation was applied to descrihe the flow stress, there were significanl errors between the experimental and calculated points in specimens tempered below 400 ℃, while a high precision was ohserved in samples tempered above 400℃. Whereas, the modijied Voce relation could effectively predici the flow stress as well as the strain hardening exponent at different tempe ring temperatures, which was verified by unbiased estimators such as maximum relative error (MRXE) and average ahsolute relative error (AARE). Besides, the modified Voee relation was also applied to estimate the maximum uniform strain, and the correlation coefficients (R) between the experimental data and calculated maximum uniform strain were more than 0.91. The high correlation coefficients indicated that the modified Vote relation could effec lively predict the uniform deformation ability of high strength steels with low carbon bainite structure at different tempering temperatures.