期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
融合相似度和地理信息的兴趣点推荐 被引量:1
1
作者 郭晨睿 李平 郭苗苗 《计算技术与自动化》 2019年第3期67-73,共7页
兴趣点推荐是一种基于上下文信息的位置感知的个性化推荐。由于用户签到行为具有高稀疏性,为兴趣点推荐的精确度带来了很大的挑战。针对该问题,提出了一种融合相似度和地理信息的兴趣点推荐模型,称为SIGFM。首先利用潜在迪利克雷分配(La... 兴趣点推荐是一种基于上下文信息的位置感知的个性化推荐。由于用户签到行为具有高稀疏性,为兴趣点推荐的精确度带来了很大的挑战。针对该问题,提出了一种融合相似度和地理信息的兴趣点推荐模型,称为SIGFM。首先利用潜在迪利克雷分配(Laten Dirichlet Allocation,LDA)模型挖掘用户相关兴趣特征并进行相似性度量,利用Louvain Community Detection(LCD)算法与用户签到数据进行相似性度量,使两种相似度相融合;然后使用地理信息获取用户的签到特征;最后将融合相似度和地理信息结合到一起获得一个新的模型。在真实数据集上的实验结果表明,SIGFM模型有效解决了数据稀疏性与冷启动问题,优于其他POIs的推荐算法。 展开更多
关键词 潜在狄利克雷分布 louvain社区发现 兴趣点推荐 地理信息 相似度
下载PDF
基于多源数据的领域主题演化路径分析 被引量:2
2
作者 张敬 朱相丽 《图书情报工作》 北大核心 2023年第14期94-108,共15页
[目的/意义]为全面、客观、高效、直观地掌握科技领域主题的发展规律和演变趋势,提出一种基于多源数据的领域主题演化路径识别和分析框架。[方法/过程]获取不同来源的科技文献数据,利用多维样本有序聚类方法辅助时间切片,基于改进的词... [目的/意义]为全面、客观、高效、直观地掌握科技领域主题的发展规律和演变趋势,提出一种基于多源数据的领域主题演化路径识别和分析框架。[方法/过程]获取不同来源的科技文献数据,利用多维样本有序聚类方法辅助时间切片,基于改进的词袋构建方法,提升LDA模型主题识别效果,借助Louvain社区发现算法在主题层进行多源数据的融合,分析领域主题演化路径。[结果/结论]利用美国太赫兹研究领域基金项目、论文和专利3种来源的数据进行实证研究,结果表明,3种数据源能够清晰划分出4个时间窗口,改进的词袋构建方法能够表征更准确的领域信息内涵,主题社区有助于从多源数据复杂的演化网络中厘清主题演化脉络。 展开更多
关键词 多源数据融合 领域主题演化路径 LDA主题模型 词袋构建 时间窗口划分 有序样本聚类 louvain社区发现算法
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部