We propose a new image encryption algorithm on the basis of the fractional-order hyperchaotic Lorenz system. While in the process of generating a key stream, the system parameters and the derivative order are embedded...We propose a new image encryption algorithm on the basis of the fractional-order hyperchaotic Lorenz system. While in the process of generating a key stream, the system parameters and the derivative order are embedded in the proposed algorithm to enhance the security. Such an algorithm is detailed in terms of security analyses, including correlation analysis, information entropy analysis, run statistic analysis, mean-variance gray value analysis, and key sensitivity analysis. The experimental results demonstrate that the proposed image encryption scheme has the advantages of large key space and high security for practical image encryption.展开更多
目前针对分数阶混沌系统的研究大多数都是基于DSP(Digital Signal Processor)平台,由于分数阶混沌系统的复杂度较大,用DSP实现存在序列生成速度较慢的问题,只能应用于对速度要求不高的系统.针对该问题,研究了基于分数阶微积分Grunwald-L...目前针对分数阶混沌系统的研究大多数都是基于DSP(Digital Signal Processor)平台,由于分数阶混沌系统的复杂度较大,用DSP实现存在序列生成速度较慢的问题,只能应用于对速度要求不高的系统.针对该问题,研究了基于分数阶微积分Grunwald-Letnikov(GL)定义的分数阶简化Lorenz系统的FPGA(field programmable gate array)实现.通过最大Lyapunov指数和0~1测试验证了基于GL定义的分数阶简化Lorenz系统是混沌的.详细分析了基于GL定义的分数阶简化Lorenz系统的FPGA实现结构,并使用定点数格式实现了该系统.通过示波器观察FPGA输出结果与MATLAB仿真结果一致,从而进一步揭示了分数阶混沌系统的可实现性.展开更多
The chaotic behaviours of a fractional-order generalized Lorenz system and its synchronization are studied in this paper. A new electronic circuit unit to realize fractional-order operator is proposed. According to th...The chaotic behaviours of a fractional-order generalized Lorenz system and its synchronization are studied in this paper. A new electronic circuit unit to realize fractional-order operator is proposed. According to the circuit unit, an electronic circuit is designed to realize a 3.8-order generalized Lorenz chaotic system. Furthermore, synchronization between two fractional-order systems is achieved by utilizing a single-variable feedback method. Circuit experiment simulation results verify the effectiveness of the proposed scheme.展开更多
In this paper, we define some non-elementary amplitude functions that are giving solutions to some well-known second-order nonlinear ODEs and the Lorenz equations, but not the chaos case. We are giving the solutions a...In this paper, we define some non-elementary amplitude functions that are giving solutions to some well-known second-order nonlinear ODEs and the Lorenz equations, but not the chaos case. We are giving the solutions a name, a symbol and putting them into a group of functions and into the context of other functions. These solutions are equal to the amplitude, or upper limit of integration in a non-elementary integral that can be arbitrary. In order to define solutions to some short second-order nonlinear ODEs, we will make an extension to the general amplitude function. The only disadvantage is that the first derivative to these solutions contains an integral that disappear at the second derivation. We will also do a second extension: the two-integral amplitude function. With this extension we have the solution to a system of ODEs having a very strange behavior. Using the extended amplitude functions, we can define solutions to many short second-order nonlinear ODEs.展开更多
This paper studies chaotic dynamics in a fractional-order unified system by means of topological horseshoe theory and numerical computation. First it finds four quadrilaterals in a carefully-chosen Poincare section, t...This paper studies chaotic dynamics in a fractional-order unified system by means of topological horseshoe theory and numerical computation. First it finds four quadrilaterals in a carefully-chosen Poincare section, then shows that the corresponding map is semiconjugate to a shift map with four symbols. By estimating the topological entropy of the map and the original time-continuous system, it provides a computer assisted verification on existence of chaos in this system, which is much more convincible than the common method of Lyapunov exponents. This new method can potentially be used in rigorous studies of chaos in such a kind of system. This paper may be a start for proving a given fractional-order differential equation to be chaotic.展开更多
In this paper, the complex dynamical behavior of a fractional-order Lorenz-like system with two quadratic terms is investigated. The existence and uniqueness of solutions for this system are proved, and the stabilitie...In this paper, the complex dynamical behavior of a fractional-order Lorenz-like system with two quadratic terms is investigated. The existence and uniqueness of solutions for this system are proved, and the stabilities of the equilibrium points are analyzed as one of the system parameters changes. The pitchfork bifurcation is discussed for the first time, and the necessary conditions for the commensurate and incommensurate fractional-order systems to remain in chaos are derived. The largest Lyapunov exponents and phase portraits are given to check the existence of chaos. Finally, the sliding mode control law is provided to make the states of the Lorenz-like system asymptotically stable. Numerical simulation results show that the presented approach can effectively guide chaotic trajectories to the unstable equilibrium points.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61004078 and 60971022)the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2009GQ009 and ZR2009GM005)+1 种基金the China Postdoctoral Science Foundation (Grant No. 20100481293)the Special Funds for Postdoctoral Innovative Projects of Shandong Province, China (Grant No. 201003037)
文摘We propose a new image encryption algorithm on the basis of the fractional-order hyperchaotic Lorenz system. While in the process of generating a key stream, the system parameters and the derivative order are embedded in the proposed algorithm to enhance the security. Such an algorithm is detailed in terms of security analyses, including correlation analysis, information entropy analysis, run statistic analysis, mean-variance gray value analysis, and key sensitivity analysis. The experimental results demonstrate that the proposed image encryption scheme has the advantages of large key space and high security for practical image encryption.
基金supported by the Natural Science Foundation of Hebei Province,China (Grant Nos A2008000136 and A2006000128)
文摘The chaotic behaviours of a fractional-order generalized Lorenz system and its synchronization are studied in this paper. A new electronic circuit unit to realize fractional-order operator is proposed. According to the circuit unit, an electronic circuit is designed to realize a 3.8-order generalized Lorenz chaotic system. Furthermore, synchronization between two fractional-order systems is achieved by utilizing a single-variable feedback method. Circuit experiment simulation results verify the effectiveness of the proposed scheme.
文摘In this paper, we define some non-elementary amplitude functions that are giving solutions to some well-known second-order nonlinear ODEs and the Lorenz equations, but not the chaos case. We are giving the solutions a name, a symbol and putting them into a group of functions and into the context of other functions. These solutions are equal to the amplitude, or upper limit of integration in a non-elementary integral that can be arbitrary. In order to define solutions to some short second-order nonlinear ODEs, we will make an extension to the general amplitude function. The only disadvantage is that the first derivative to these solutions contains an integral that disappear at the second derivation. We will also do a second extension: the two-integral amplitude function. With this extension we have the solution to a system of ODEs having a very strange behavior. Using the extended amplitude functions, we can define solutions to many short second-order nonlinear ODEs.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10926072 and 10972082)Chongqing Municipal Education Commission(Grant No.KJ080515)Natural Science Foundation Project of CQ CSTC,China(GrantNo.2008BB2409)
文摘This paper studies chaotic dynamics in a fractional-order unified system by means of topological horseshoe theory and numerical computation. First it finds four quadrilaterals in a carefully-chosen Poincare section, then shows that the corresponding map is semiconjugate to a shift map with four symbols. By estimating the topological entropy of the map and the original time-continuous system, it provides a computer assisted verification on existence of chaos in this system, which is much more convincible than the common method of Lyapunov exponents. This new method can potentially be used in rigorous studies of chaos in such a kind of system. This paper may be a start for proving a given fractional-order differential equation to be chaotic.
基金Projected supported by the National Natural Science Foundation of China (Grant No. 11202155)the Fundamental Research Funds for the Central Universities, China (Grant No. K50511700001)
文摘In this paper, the complex dynamical behavior of a fractional-order Lorenz-like system with two quadratic terms is investigated. The existence and uniqueness of solutions for this system are proved, and the stabilities of the equilibrium points are analyzed as one of the system parameters changes. The pitchfork bifurcation is discussed for the first time, and the necessary conditions for the commensurate and incommensurate fractional-order systems to remain in chaos are derived. The largest Lyapunov exponents and phase portraits are given to check the existence of chaos. Finally, the sliding mode control law is provided to make the states of the Lorenz-like system asymptotically stable. Numerical simulation results show that the presented approach can effectively guide chaotic trajectories to the unstable equilibrium points.