对同心球间旋转流动的N av ier-S tokes方程谱展开后进行三模态截断,讨论了所得到的类Lorenz型方程组的分歧问题.给出了静态奇异点的条件,并计算出解分支.首先,简要介绍了Lorenz方程组以及用Lorenz截断法讨论非线性问题的意义,其次,推...对同心球间旋转流动的N av ier-S tokes方程谱展开后进行三模态截断,讨论了所得到的类Lorenz型方程组的分歧问题.给出了静态奇异点的条件,并计算出解分支.首先,简要介绍了Lorenz方程组以及用Lorenz截断法讨论非线性问题的意义,其次,推导同心球间旋转流动N av ier-S tokes方程的流函数-涡度形式,最后,讨论同心球间旋转流动的类Lorenz型方程组的分歧问题.展开更多
In the recent years, researchers developed image encryption methods based on chaotic systems. This paper proposed new image encryption technique based on new chaotic system by adding two chaotic systems: the Lorenz ch...In the recent years, researchers developed image encryption methods based on chaotic systems. This paper proposed new image encryption technique based on new chaotic system by adding two chaotic systems: the Lorenz chaotic system and the R?ssler chaotic system. The main advantage of this technique is stronger security, as is shown in the encryption tests.展开更多
We present how a probabilistic model can describe the asymptotic behavior of the iterations, with applications for ODE and approach of the Poincaré- Bendixon’s problem in R<sup>d</sup>.
This article is a review and promotion of the study of solutions of differential equations in the “neighborhood of infinity” via a non traditional compactification. We define and compute critical points at infinity ...This article is a review and promotion of the study of solutions of differential equations in the “neighborhood of infinity” via a non traditional compactification. We define and compute critical points at infinity of polynomial autonomuos differential systems and develop an explicit formula for the leading asymptotic term of diverging solutions to critical points at infinity. Applications to problems of completeness and incompleteness (the existence and nonexistence respectively of global solutions) of dynamical systems are provided. In particular a quadratic competing species model and the Lorentz equations are being used as arenas where our technique is applied. The study is also relevant to the Painlevé property and to questions of integrability of dynamical systems.展开更多
In this study, we introduce a closed loop quotient controller into the three-dimensional Lorenz system. We then compute the equilibrium points and analyze their local stability. We use several examples to illustrate h...In this study, we introduce a closed loop quotient controller into the three-dimensional Lorenz system. We then compute the equilibrium points and analyze their local stability. We use several examples to illustrate how cross-sections of the basins of attraction for the equilibrium points look for various parameter values. We then provided numerical evidence that with the controller, the controlled Lorenz system cannot exhibit chaos if the equilibrium points are locally stable.展开更多
We systematically investigate the periodic orbits of the Lorenz flow up to certain topological length. As an alternative to Poincar6 section map analysis, we propose a new approach for establishing one-dimensional sym...We systematically investigate the periodic orbits of the Lorenz flow up to certain topological length. As an alternative to Poincar6 section map analysis, we propose a new approach for establishing one-dimensional symbolic dynamics based on the topological structure of the orbit. A newly designed variational method is stable numerically for cycle searching, and two orbital fragments can be used as basic building blocks for initialization. The topological classification based on the entire orbital structure is revealed to be effective. The deformation of periodic orbits with the change of parameters provides a chart to the periods of cycles. The current research may provide a methodology for finding and systematically classifying periodic orbits in other similar chaotic flows.展开更多
In this case-study, we examine the effects of linear control on continuous dynamical systems that exhibit chaotic behavior using the symbolic computer algebra system Mathematica. Stabilizing (or controlling) higher-di...In this case-study, we examine the effects of linear control on continuous dynamical systems that exhibit chaotic behavior using the symbolic computer algebra system Mathematica. Stabilizing (or controlling) higher-dimensional chaotic dynamical systems is generally a difficult problem, Musielak and Musielak, [1]. We numerically illustrate that sometimes elementary approaches can yield the desired numerical results with two different continuous higher order dynamical systems that exhibit chaotic behavior, the Lorenz equations and the Rössler attractor.展开更多
文摘对同心球间旋转流动的N av ier-S tokes方程谱展开后进行三模态截断,讨论了所得到的类Lorenz型方程组的分歧问题.给出了静态奇异点的条件,并计算出解分支.首先,简要介绍了Lorenz方程组以及用Lorenz截断法讨论非线性问题的意义,其次,推导同心球间旋转流动N av ier-S tokes方程的流函数-涡度形式,最后,讨论同心球间旋转流动的类Lorenz型方程组的分歧问题.
文摘In the recent years, researchers developed image encryption methods based on chaotic systems. This paper proposed new image encryption technique based on new chaotic system by adding two chaotic systems: the Lorenz chaotic system and the R?ssler chaotic system. The main advantage of this technique is stronger security, as is shown in the encryption tests.
文摘We present how a probabilistic model can describe the asymptotic behavior of the iterations, with applications for ODE and approach of the Poincaré- Bendixon’s problem in R<sup>d</sup>.
文摘This article is a review and promotion of the study of solutions of differential equations in the “neighborhood of infinity” via a non traditional compactification. We define and compute critical points at infinity of polynomial autonomuos differential systems and develop an explicit formula for the leading asymptotic term of diverging solutions to critical points at infinity. Applications to problems of completeness and incompleteness (the existence and nonexistence respectively of global solutions) of dynamical systems are provided. In particular a quadratic competing species model and the Lorentz equations are being used as arenas where our technique is applied. The study is also relevant to the Painlevé property and to questions of integrability of dynamical systems.
文摘In this study, we introduce a closed loop quotient controller into the three-dimensional Lorenz system. We then compute the equilibrium points and analyze their local stability. We use several examples to illustrate how cross-sections of the basins of attraction for the equilibrium points look for various parameter values. We then provided numerical evidence that with the controller, the controlled Lorenz system cannot exhibit chaos if the equilibrium points are locally stable.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11647085,11647086,and 11747106)the Applied Basic Research Foundation of Shanxi Province,China(Grant No.201701D121011)the Natural Science Research Fund of North University of China(Grant No.XJJ2016036)
文摘We systematically investigate the periodic orbits of the Lorenz flow up to certain topological length. As an alternative to Poincar6 section map analysis, we propose a new approach for establishing one-dimensional symbolic dynamics based on the topological structure of the orbit. A newly designed variational method is stable numerically for cycle searching, and two orbital fragments can be used as basic building blocks for initialization. The topological classification based on the entire orbital structure is revealed to be effective. The deformation of periodic orbits with the change of parameters provides a chart to the periods of cycles. The current research may provide a methodology for finding and systematically classifying periodic orbits in other similar chaotic flows.
文摘In this case-study, we examine the effects of linear control on continuous dynamical systems that exhibit chaotic behavior using the symbolic computer algebra system Mathematica. Stabilizing (or controlling) higher-dimensional chaotic dynamical systems is generally a difficult problem, Musielak and Musielak, [1]. We numerically illustrate that sometimes elementary approaches can yield the desired numerical results with two different continuous higher order dynamical systems that exhibit chaotic behavior, the Lorenz equations and the Rössler attractor.