<strong>Motivation:</strong> We study the asymptotic-type dynamics of various real pointlike objects that one models by a variety of differential equations. Their response to an external force one defines ...<strong>Motivation:</strong> We study the asymptotic-type dynamics of various real pointlike objects that one models by a variety of differential equations. Their response to an external force one defines solely by the trajectory of a single point. Its velocity eventually stops changing after cessation of the external force. The response of their acceleration to the long-term external force is slow and possibly nonlinear. <strong>Objective:</strong> Our objective is to present technique for making simplified models for the long-term dynamics of pointlike objects whose motion interacts with the surroundings. In the asymptotic-type long-term dynamics, the time variable <em>t</em> ∈ (<em>t<sub>m</sub></em>, +∞) and<em> t<sub>m</sub></em> > 0 is large, say <img src="Edit_6f0f7522-7319-4b30-a451-0453ff0f75d3.bmp" alt="" />! <strong>Method:</strong> We apply Taylor series expansion to differential equations to model the acceleration of pointlike object whose response to the long-term external force is not instantaneous and possibly nonlinear. <strong>Results:</strong> We make simplified models for the long-term dynamics of pointlike objects by Taylor polynomials in time derivatives of the external force. <strong>Application:</strong> We interpret the relativistic Lorentz-Abraham-Dirac equation as an equation for modeling the long-term dynamics, where <em>t</em> ≥ <em>t<sub>m</sub></em> <span style="white-space:nowrap;">≫</span> 0. This interpretation resolves the conceptual and usage controversy surrounding its troublesome application to determine the trajectory of a radiating charged particle, thus contributing to the development of more adequate modeling of physical phenomena.展开更多
文摘<strong>Motivation:</strong> We study the asymptotic-type dynamics of various real pointlike objects that one models by a variety of differential equations. Their response to an external force one defines solely by the trajectory of a single point. Its velocity eventually stops changing after cessation of the external force. The response of their acceleration to the long-term external force is slow and possibly nonlinear. <strong>Objective:</strong> Our objective is to present technique for making simplified models for the long-term dynamics of pointlike objects whose motion interacts with the surroundings. In the asymptotic-type long-term dynamics, the time variable <em>t</em> ∈ (<em>t<sub>m</sub></em>, +∞) and<em> t<sub>m</sub></em> > 0 is large, say <img src="Edit_6f0f7522-7319-4b30-a451-0453ff0f75d3.bmp" alt="" />! <strong>Method:</strong> We apply Taylor series expansion to differential equations to model the acceleration of pointlike object whose response to the long-term external force is not instantaneous and possibly nonlinear. <strong>Results:</strong> We make simplified models for the long-term dynamics of pointlike objects by Taylor polynomials in time derivatives of the external force. <strong>Application:</strong> We interpret the relativistic Lorentz-Abraham-Dirac equation as an equation for modeling the long-term dynamics, where <em>t</em> ≥ <em>t<sub>m</sub></em> <span style="white-space:nowrap;">≫</span> 0. This interpretation resolves the conceptual and usage controversy surrounding its troublesome application to determine the trajectory of a radiating charged particle, thus contributing to the development of more adequate modeling of physical phenomena.