根据洛伦兹电子论、朗伯定律和比尔定律,提出了一种用来描述溶液的浓度与其折射率线性关系的理论模型.实验测定了蔗糖和N aC l溶液,基于最小二乘法原理,根据实验数据得到各自的浓度与其折射率关系的实验模型,实验结果表明模型的计算结...根据洛伦兹电子论、朗伯定律和比尔定律,提出了一种用来描述溶液的浓度与其折射率线性关系的理论模型.实验测定了蔗糖和N aC l溶液,基于最小二乘法原理,根据实验数据得到各自的浓度与其折射率关系的实验模型,实验结果表明模型的计算结果与实际测量结果的误差小于2%.这种研究结果对利用光激发表面等离子共振技术和介质增强古斯-汉欣位移方法测量溶液的浓度具有参考意义.展开更多
Model of an atom by analogy with the transmission line is derived using Maxwell’s equations and Lorentz’ theory of electrons. To be realistic such a model requires that the product of the structural coefficient of L...Model of an atom by analogy with the transmission line is derived using Maxwell’s equations and Lorentz’ theory of electrons. To be realistic such a model requires that the product of the structural coefficient of Lecher’s transmission lines σ and atomic number Z is constant. It was calculated that this electromechanical constant is 8.27756, and we call it structural constant. This constant builds the fine-structure constant 1/α = 137.036, and with permeability μ, permittivity ε and elementary charge e builds Plank’s constant h. This suggests the electromagnetic character of Planck’s constant. The relations of energy, frequency, wavelength and momentum of electromagnetic wave in an atom are also derived. Finally, an equation, similar to Schrodinger’s equation, was derived, with a clear meaning of the wave function, which represents the electric or magnetic field strength of the observed electromagnetic wave.展开更多
文摘根据洛伦兹电子论、朗伯定律和比尔定律,提出了一种用来描述溶液的浓度与其折射率线性关系的理论模型.实验测定了蔗糖和N aC l溶液,基于最小二乘法原理,根据实验数据得到各自的浓度与其折射率关系的实验模型,实验结果表明模型的计算结果与实际测量结果的误差小于2%.这种研究结果对利用光激发表面等离子共振技术和介质增强古斯-汉欣位移方法测量溶液的浓度具有参考意义.
文摘Model of an atom by analogy with the transmission line is derived using Maxwell’s equations and Lorentz’ theory of electrons. To be realistic such a model requires that the product of the structural coefficient of Lecher’s transmission lines σ and atomic number Z is constant. It was calculated that this electromechanical constant is 8.27756, and we call it structural constant. This constant builds the fine-structure constant 1/α = 137.036, and with permeability μ, permittivity ε and elementary charge e builds Plank’s constant h. This suggests the electromagnetic character of Planck’s constant. The relations of energy, frequency, wavelength and momentum of electromagnetic wave in an atom are also derived. Finally, an equation, similar to Schrodinger’s equation, was derived, with a clear meaning of the wave function, which represents the electric or magnetic field strength of the observed electromagnetic wave.