Depending on the analysis of the coeval sedimentary geometry and subsidence mechanism in the Longmen Shan foreland basin, three models about the coupling relationship between Longmen Shan uplift and foreland basin sub...Depending on the analysis of the coeval sedimentary geometry and subsidence mechanism in the Longmen Shan foreland basin, three models about the coupling relationship between Longmen Shan uplift and foreland basin subsidence since the Indosinian have been proposed:(1) crustal shortening and its related wide wedge-shaped foreland basin,(2) crustal isostatic rebound and its related tabular foreland basin, and(3) lower crustal flow and its related narrow wedge-shaped foreland basin. Based on the narrow wedge-shaped foreland basin developed since 4 Ma, it is believed that the narrow crustal shortening and tectonic load driven by lower crustal flow is a primary driver for the present Longmen Shan uplift and the Wenchuan(Ms 8.0) earthquake.展开更多
基金funded by China National Natural Science Foundation(No:41372114,41502116,41340005,40841010,40972083,41172162,and 41402159)geological survey from China Geological Survey(No:121201010000150004–08 and 12120115004501–01)the project of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(No:SK–0801)
文摘Depending on the analysis of the coeval sedimentary geometry and subsidence mechanism in the Longmen Shan foreland basin, three models about the coupling relationship between Longmen Shan uplift and foreland basin subsidence since the Indosinian have been proposed:(1) crustal shortening and its related wide wedge-shaped foreland basin,(2) crustal isostatic rebound and its related tabular foreland basin, and(3) lower crustal flow and its related narrow wedge-shaped foreland basin. Based on the narrow wedge-shaped foreland basin developed since 4 Ma, it is believed that the narrow crustal shortening and tectonic load driven by lower crustal flow is a primary driver for the present Longmen Shan uplift and the Wenchuan(Ms 8.0) earthquake.