期刊文献+
共找到4,872篇文章
< 1 2 244 >
每页显示 20 50 100
Predicting Malaria Dynamics in Burundi Using Deep Learning Models
1
作者 Daxelle Sakubu Kelly Joelle Gatore Sinigirira David Niyukuri 《Journal of Applied Mathematics and Physics》 2024年第8期2904-2917,共14页
Malaria continues to be a major public health problem on the African continent, particularly in Sub-Saharan Africa despite the ongoing efforts and significant progress that has been made. In the case of Burundi, malar... Malaria continues to be a major public health problem on the African continent, particularly in Sub-Saharan Africa despite the ongoing efforts and significant progress that has been made. In the case of Burundi, malaria remains a major public health concern in the general population. In the literature, there are limited malaria prediction models for Burundi knowing that such tools are much needed for intervention design. In this study, deep-learning models are built to estimate malaria cases in Burundi. The forecast of malaria cases was carried out both at the provincial and national levels. Long short term memory (LSTM) model, a type of deep learning model, has been used to achieve best results using climate-change related factors such as temperature, rainfall, relative humidity, together with malaria historical data and human population. With this model, the results showed that different parameter tuning can be used to determine the minimum and maximum expected malaria cases. The univariate version of that model (LSTM), which learns from previous dynamics of malaria cases, gives more precise estimates, but both univariate and multivariate models have the same overall trends at the province level and country level. 展开更多
关键词 MALARIA Prediction Deep Learning long-short-term Memory (LSTM) BURUNDI
下载PDF
Time-varying parameters estimation with adaptive neural network EKF for missile-dual control system
2
作者 YUAN Yuqi ZHOU Di +1 位作者 LI Junlong LOU Chaofei 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期451-462,共12页
In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LST... In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model. 展开更多
关键词 long-short-term memory(LSTM)neural network extended Kalman filter(EKF) rolling training time-varying parameters estimation missile dual control system
下载PDF
Application of LSTM model optimized by individual-ordering- basedadaptivegeneticalgorithmin stock forecasting
3
作者 Yong He Xiaohua Zeng +1 位作者 Huan Li Wenhong Wei 《International Journal of Intelligent Computing and Cybernetics》 EI 2023年第2期277-294,共18页
Purpose-To improve the accuracy of stock price trend prediction in the field of quantitative financial trading,this paper takes the prediction accuracy as the goal and avoid the enormous number of network structures a... Purpose-To improve the accuracy of stock price trend prediction in the field of quantitative financial trading,this paper takes the prediction accuracy as the goal and avoid the enormous number of network structures and hyperparameter adjustments of long-short-term memory(LSTM).Design/methodology/approach-In this paper,an adaptive genetic algorithm based on individual ordering is used to optimize the network structure and hyperparameters of the LSTM neural network automatically.Findings-The simulation results show that the accuracy of the rise and fall of the stock outperform than the model with LSTM only as well as other machine learning models.Furthermore,the efficiency of parameter adjustment is greatly higher than other hyperparameter optimization methods.Originality/value-(1)The AGA-LSTM algorithm is used to input various hyperparameter combinations into genetic algorithm to find the best hyperparameter combination.Compared with other models,it has higher accuracy in predicting the up and down trend of stock prices in the next day.(2)Adopting real coding,elitist preservation and self-adaptive adjustment of crossover and mutation probability based on individual ordering in the part of genetic algorithm,the algorithm is computationally efficient and the results are more likely to converge to the global optimum. 展开更多
关键词 Stock price prediction long-short-term memory Adaptive genetic algorithm Machine learning
原文传递
NHRec:一种基于长短期兴趣的神经混合推荐模型 被引量:3
4
作者 孙金杨 刘柏嵩 +1 位作者 任豪 黄伟明 《小型微型计算机系统》 CSCD 北大核心 2020年第11期2298-2302,共5页
用户建模是推荐系统中的一项基本任务,传统的方法使用协同过滤(CF)建模用户的潜在兴趣,但用户的兴趣往往是复杂多样且会随时间而变化,单一的模型无法准确建模用户的兴趣特征,针对此问题,本文提出一种新的自适应融合用户长短期兴趣的混... 用户建模是推荐系统中的一项基本任务,传统的方法使用协同过滤(CF)建模用户的潜在兴趣,但用户的兴趣往往是复杂多样且会随时间而变化,单一的模型无法准确建模用户的兴趣特征,针对此问题,本文提出一种新的自适应融合用户长短期兴趣的混合推荐模型(NHRec).该模型根据用户的历史信息,利用融合注意力机制的门控循环单元(GRU)建模用户的短期兴趣,兼顾时序信息和内容上的相关性,同时采用卷积神经网络(CNN)对用户的全局信息进行提取得到用户长期兴趣,并使用基于时间间隔信息的自适应方式融合两类兴趣进行推荐计算.实验结果表明,提出的推荐算法NHRec相较于目前比较流行的推荐算法表现出更为优越的推荐性能. 展开更多
关键词 推荐系统 长短期兴趣 门控循环单元 卷积神经网络 注意力机制
下载PDF
Reconstruction Residuals Based Long-term Voltage Stability Assessment Using Autoencoders 被引量:3
5
作者 Haosen Yang Robert C.Qiu Houjie Tong 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2020年第6期1092-1103,共12页
Real-time voltage stability assessment(VSA)has long been an extensively research topic.In recent years,rapidly mounting deep learning methods have pushed online VSA to a new height that large amounts of learning algor... Real-time voltage stability assessment(VSA)has long been an extensively research topic.In recent years,rapidly mounting deep learning methods have pushed online VSA to a new height that large amounts of learning algorithms are applied for VSA from the perspective of measurement data.Deep learning methods generally require a large dataset which contains measurements in both secure and insecure states,or even unstable state.However,in practice,the data of insecure or unstable state is very rare,as the power system should be guaranteed to operate far away from voltage collapse.Under this circumstance,this paper proposes an autoencoder based method which merely needs data of secure state to evaluate voltage stability of a power system.The principle of this method is that an autoencoder purely trained by secure data is expected to only create precise reconstruction for secure data,while it fails to rebuild data of insecure states.Thus,the residual of reconstruction is effective in indicating VSA.Besides,to develop a more accurate and robust algorithm,long short-term memory(LSTM)networks combined with fully-connected(FC)layers are used to build the autoencoder,and a moving strategy is introduced to bias the features of testing data toward the secure feature domain.Numerous experiments and comparison with traditional machine learning algorithms demonstrate the effectiveness and high accuracy of the proposed method. 展开更多
关键词 Reconstruction loss autoencoders voltage stability long-short-term memory(LSTM) feature moving strategy
原文传递
Ionospheric vertical total electron content prediction model in low-latitude regions based on long short-term memory neural network
6
作者 Tong-Bao Zhang Hui-Jian Liang +1 位作者 Shi-Guang Wang Chen-Guang Ouyang 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第8期347-358,共12页
Ionosphere delay is one of the main sources of noise affecting global navigation satellite systems, operation of radio detection and ranging systems and very-long-baseline-interferometry. One of the most important and... Ionosphere delay is one of the main sources of noise affecting global navigation satellite systems, operation of radio detection and ranging systems and very-long-baseline-interferometry. One of the most important and common methods to reduce this phase delay is to establish accurate nowcasting and forecasting ionospheric total electron content models. For forecasting models, compared to mid-to-high latitudes, at low latitudes, an active ionosphere leads to extreme differences between long-term prediction models and the actual state of the ionosphere. To solve the problem of low accuracy for long-term prediction models at low latitudes, this article provides a low-latitude, long-term ionospheric prediction model based on a multi-input-multi-output, long-short-term memory neural network. To verify the feasibility of the model, we first made predictions of the vertical total electron content data 24 and 48 hours in advance for each day of July 2020 and then compared both the predictions corresponding to a given day, for all days. Furthermore, in the model modification part, we selected historical data from June 2020 for the validation set, determined a large offset from the results that were predicted to be active, and used the ratio of the mean absolute error of the detected results to that of the predicted results as a correction coefficient to modify our multi-input-multi-output long short-term memory model. The average root mean square error of the 24-hour-advance predictions of our modified model was 4.4 TECU, which was lower and better than5.1 TECU of the multi-input-multi-output, long short-term memory model and 5.9 TECU of the IRI-2016 model. 展开更多
关键词 long-short-term memory neural network equatorial ionosphere vertical total electron content vertical total electron content(vTEC)
下载PDF
Study on the fusion emotion classification of multiple characteristics based on attention mechanism
7
作者 Li Ying Shao Qing Hao Weichen 《High Technology Letters》 EI CAS 2021年第3期320-328,共9页
The current research on emotional classification uses many methods that combine the attention mechanism with neural networks.However,the effect is unsatisfactory when dealing with complex text.An emotional classificat... The current research on emotional classification uses many methods that combine the attention mechanism with neural networks.However,the effect is unsatisfactory when dealing with complex text.An emotional classification model is proposed,which combines multi-head attention(MHA)with improved structured-self attention(SSA).The model makes several different linear transformations of input by introducing MHA mechanism and can extract more comprehensive high-level phrase representation features from the word embedded vector.Meanwhile,it can realize the parallelization calculation and ensure the training speed of the model.The improved SSA structure uses matrices to represent different parts of a sentence to extract local key information,to ensure that the degree of dependence between words is not affected by time and sentence length,and generate the overall semantics of the sentence.Experiment results show that the current model effectively obtains global structural information and improves classification accuracy. 展开更多
关键词 multi-head attention(MHA) structured-self attention(SSA) emotion classification deep learning bidirectional long-short-term memory(BiLSTM)
下载PDF
基于Wide&Deep-LSTM模型的短期台区负荷预测 被引量:53
8
作者 吕海灿 王伟峰 +3 位作者 赵兵 张毅 郭秋婷 胡伟 《电网技术》 EI CSCD 北大核心 2020年第2期428-436,共9页
负荷预测是电力系统经济运行的基础,其对电力系统规划和运行都极其重要。由于影响负荷预测的因素较多,因此用常规的方法很难获得较好的预测结果。随着新一代人工智能技术的兴起,尤其以深度学习和大数据技术的快速发展,为进一步提高负荷... 负荷预测是电力系统经济运行的基础,其对电力系统规划和运行都极其重要。由于影响负荷预测的因素较多,因此用常规的方法很难获得较好的预测结果。随着新一代人工智能技术的兴起,尤其以深度学习和大数据技术的快速发展,为进一步提高负荷预测的精确度奠定了良好的基础。文中将深度学习方法引入到电力系统的短期台区负荷预测中,综合利用了负荷台区的电压、电流、功率以及时间等特征信息。同时在已有的长短期记忆网络(LSTM)模型和宽度&深度(Wide&Deep)模型的基础上,建立了基于Wide&DeepLSTM的深度学习短期负荷预测模型,并在此基础上进行了日前台区负荷预测。该模型能够兼具深度神经网络的学习能力与LSTM模块的时间序列信息表达特性,能够较好地解决台区电力负荷预测的多特征维度及时序性特征问题。最后利用Tensorflow深度学习框架生成了仿真模型并加以验证,仿真结果充分证明了所提方法的准确性与实用性。 展开更多
关键词 负荷预测 大数据 深度学习 长短期记忆网络 宽度&深度模型
下载PDF
基于双向长短期记忆网络的电力系统暂态稳定评估 被引量:52
9
作者 孙黎霞 白景涛 +1 位作者 周照宇 赵晨昀 《电力系统自动化》 EI CSCD 北大核心 2020年第13期64-72,共9页
为进一步提升电力系统暂态稳定评估的准确率,依据电力系统暂态过程数据的时序特性,建立了一种基于双向长短期记忆(Bi-LSTM)网络的暂态稳定评估模型。该方法通过Bi-LSTM网络建立底层量测数据与电力系统暂态稳定类别之间的非线性映射关系... 为进一步提升电力系统暂态稳定评估的准确率,依据电力系统暂态过程数据的时序特性,建立了一种基于双向长短期记忆(Bi-LSTM)网络的暂态稳定评估模型。该方法通过Bi-LSTM网络建立底层量测数据与电力系统暂态稳定类别之间的非线性映射关系,采用准确率、F1指标和FPR指标综合评估Bi-LSTM网络模型性能的优劣,在此基础上,采用t分布随机近邻嵌入(t-SNE)降维方法和k最近邻(KNN)分类器进一步提升暂态稳定评估的准确率。新英格兰10机39节点系统算例表明:所提模型比传统的机器学习模型和部分深度学习模型拥有更好的评估性能。通过可视化方法和网络预测分数对评估模型进行分析,结果表明Bi-LSTM网络模型具有较强的电力系统暂态过程特征提取能力,适用于电力系统暂态稳定性的评估。进一步研究了底层输入数据的归一化模式和方法对暂态评估模型的影响,结果表明z-score归一化方法要优于min-max归一化方法,采用总维数归一化模式的模型评估性能更好。 展开更多
关键词 深度学习 长短期记忆网络 暂态稳定评估 归一化 t分布随机近邻嵌入 k最近邻
下载PDF
基于LSTM自动编码器的电力负荷聚类建模及特性分析 被引量:46
10
作者 庞传军 余建明 +2 位作者 冯长有 刘艳 江叶峰 《电力系统自动化》 EI CSCD 北大核心 2020年第23期57-63,共7页
电力系统负荷聚类和特性分析对电网的安全与经济调度、运行具有重要意义,是提升调度人员对电网感知能力的重要技术手段。为了解决传统负荷聚类方法需要人工设定负荷特征指标和无法考虑负荷时序特性等问题,提出了一种由长短期记忆(LSTM)... 电力系统负荷聚类和特性分析对电网的安全与经济调度、运行具有重要意义,是提升调度人员对电网感知能力的重要技术手段。为了解决传统负荷聚类方法需要人工设定负荷特征指标和无法考虑负荷时序特性等问题,提出了一种由长短期记忆(LSTM)自动编码器构成的负荷聚类方法。利用LSTM的时序记忆能力和自动编码器的非线性特征提取能力,实现了考虑负荷时序特性的自动特征提取和非线性降维。然后,基于提取的负荷特征采用k-means聚类算法进行电力负荷聚类分析。最后,采用实际供电区域的负荷数据进行验证,并对负荷特性进行详细的分析。结果表明所提方法与其他负荷特征提取方法相比,有较好的负荷聚类效果。 展开更多
关键词 负荷聚类 负荷特征 长短期记忆 自动编码器
下载PDF
深度学习在电力负荷预测中的应用 被引量:32
11
作者 张建寰 吉莹 陈立东 《自动化仪表》 CAS 2019年第8期8-12,17,共6页
针对电力负荷预测中存在的随机性、不确定性的问题,结合深度学习算法具有很强的自适应感知能力等特点,采用目前较为主流的深度学习方法,如长短时记忆(LSTM)网络、门循环单元(GRU)神经网络和栈式自编码器(SAE),分别研究其应用于电力负荷... 针对电力负荷预测中存在的随机性、不确定性的问题,结合深度学习算法具有很强的自适应感知能力等特点,采用目前较为主流的深度学习方法,如长短时记忆(LSTM)网络、门循环单元(GRU)神经网络和栈式自编码器(SAE),分别研究其应用于电力负荷预测时的效果。研究发现,将历史负荷数据作为三种深度学习预测模型的输入时,三种预测模型的负荷预测精度指标评估结果各有不同。因此,为了全面评估三种预测模型的预测效果,提出将不同时间段内的相同历史负荷数据作为预测模型输入对比各模型的负荷预测精度,从中找出最佳的预测模型。仿真结果验证了三种预测模型在电力负荷预测应用中的可行性,且发现在单输入因素时LSTM模型的预测精度相对较高。因此,在后续研究中,可以考虑以LSTM预测模型作为基础预测模型,结合更多的负荷影响因素进行改进,以提高负荷预测精度。 展开更多
关键词 深度学习 长短时记忆 门循环单元 循环神经网络 栈式自编码器 负荷预测 预测精度
下载PDF
基于PCA-DBILSTM的多因素短期负荷预测模型 被引量:32
12
作者 李泽文 胡让 +3 位作者 刘湘 邓裕文 唐鹏 王杨帆 《电力系统及其自动化学报》 CSCD 北大核心 2020年第12期32-39,共8页
针对传统神经网络在短期负荷预测中预测精度不高、预测时间较长的问题,提出了一种基于主成分分析法和深度双向长短期记忆神经网络的短期负荷预测模型。该模型运用主成分分析法对原始多维输入变量组成的时间序列进行主成分提取,实现原始... 针对传统神经网络在短期负荷预测中预测精度不高、预测时间较长的问题,提出了一种基于主成分分析法和深度双向长短期记忆神经网络的短期负荷预测模型。该模型运用主成分分析法对原始多维输入变量组成的时间序列进行主成分提取,实现原始负荷的降维;然后通过深度双向长短期记忆网络结合Adamax优化算法,对提取的主成分序列和负荷实际输出序列之间的非线性关系建立网络模型。以中国某地区的负荷数据作为实际算例,验证该方法预测精度达到了99.44%,并与传统预测模型进行对比,在保证预测精度的同时,大幅降低了预测时间。 展开更多
关键词 主成分分析 双向长短期记忆网络 时间序列 负荷预测 Adamax算法
下载PDF
基于卷积长短期记忆神经网络的短期风功率预测 被引量:30
13
作者 栗然 马涛 +3 位作者 张潇 回旭 刘英培 尹晓钢 《太阳能学报》 EI CAS CSCD 北大核心 2021年第6期304-311,共8页
提出一种基于卷积长短期记忆神经网络(CNN-LSTM)的短期风功率预测模型。该模型以风电场风功率历史数据以及风速风向等数值天气预报(NWP)数据为输入对风功率进行预测。首先,利用主成分分析法(PCA)对原始多维气象数据变量进行预处理,然后... 提出一种基于卷积长短期记忆神经网络(CNN-LSTM)的短期风功率预测模型。该模型以风电场风功率历史数据以及风速风向等数值天气预报(NWP)数据为输入对风功率进行预测。首先,利用主成分分析法(PCA)对原始多维气象数据变量进行预处理,然后将处理过的气象数据和历史风功率数据通过卷积网络实现对数据的特征提取和进一步的数据降维,再通过长短期记忆网络实现对数据的拟合,并在神经网络的训练过程中引入DropConnect技术减小模型中的过拟合现象,最终实现风功率的精确预测。以中国西北某风电场的实测数据进行验证,结果表明所提方法能有效对风功率进行预测,较BP神经网络和支持向量机(SVM)有更高的预测精度。 展开更多
关键词 风功率预测 主成分分析 长短期记忆 卷积神经网络 DropConnect技术
下载PDF
基于LSTM循环神经网络的岩性识别方法 被引量:27
14
作者 武中原 张欣 +1 位作者 张春雷 王海英 《岩性油气藏》 CSCD 北大核心 2021年第3期120-128,共9页
针对复杂碳酸盐岩储层岩石组分复杂、岩性多样,常规测井岩性识别方法受限等问题,提出利用长短期记忆神经网络(LSTM)提高岩性识别效果的方法,并结合实际数据进行验证和应用效果分析。考虑到常规机器学习方法在岩性识别中无法充分利用沉... 针对复杂碳酸盐岩储层岩石组分复杂、岩性多样,常规测井岩性识别方法受限等问题,提出利用长短期记忆神经网络(LSTM)提高岩性识别效果的方法,并结合实际数据进行验证和应用效果分析。考虑到常规机器学习方法在岩性识别中无法充分利用沉积岩石在深度域序列上的潜在信息,从而基于LSTM方法构建了能够提取和学习岩性沉积序列特征的岩性识别手段。以苏里格气田苏东地区下古生界碳酸盐岩储层为例,通过敏感性分析选取自然伽马、光电吸收截面指数、密度、声波时差、补偿中子和电阻率等6种测井参数,构建了基于LSTM的岩性识别模型。结果表明,与朴素贝叶斯,KNN,决策树,SVM和HMM等传统方法相比,LSTM的岩性识别准确率提升幅度介于1.40%~12.25%。高精度的LSTM岩性识别模型为复杂碳酸盐岩储层的表征和评价提供了数据基础。 展开更多
关键词 长短期记忆神经网络 岩性识别 碳酸盐岩储层 机器学习
下载PDF
基于集群划分的光伏电站集群发电功率短期预测方法 被引量:25
15
作者 卢俊杰 蔡涛 +2 位作者 郎建勋 彭小圣 程凯 《高电压技术》 EI CAS CSCD 北大核心 2022年第5期1943-1951,共9页
光伏发电集群的功率预测对区域光伏发电的优化调度意义重大。为提升光伏电站集群功率预测精度,提出了基于K均值聚类划分的光伏集群短期功率预测方法,以场站光伏发电特征为参照,进行集群聚类划分,并引入带补偿偏置的长短期记忆网络(bias ... 光伏发电集群的功率预测对区域光伏发电的优化调度意义重大。为提升光伏电站集群功率预测精度,提出了基于K均值聚类划分的光伏集群短期功率预测方法,以场站光伏发电特征为参照,进行集群聚类划分,并引入带补偿偏置的长短期记忆网络(bias compensation long short-term memory network,BC-LSTM)进行功率预测。算例结果表明,使用带补偿偏置的长短期记忆网络相较于长短期记忆网络网络(long short-term memory network,LSTM)能够提升约0.6%的预测精度,使用集群累加法相较于统计升尺度法和累加法也能够提升约0.5%的预测精度。 展开更多
关键词 光伏集群电站 功率预测 集群划分 K均值聚类 带补偿偏置的长短期记忆神经网络 集群累加法
下载PDF
基于多通道输入和PCNN-BiLSTM的光伏发电功率超短期预测 被引量:23
16
作者 毕贵红 赵鑫 +4 位作者 陈臣鹏 陈仕龙 李璐 谢旭 骆钊 《电网技术》 EI CSCD 北大核心 2022年第9期3463-3476,共14页
由于太阳能和天气变量的随机性和不稳定性,光伏发电具有很高的不确定性,准确的光伏发电功率预测对于光伏电站的短期调度和发电计划的运行至关重要。提出一种基于多模式分解、多通道输入、并联卷积神经网络(parallel convolutional neura... 由于太阳能和天气变量的随机性和不稳定性,光伏发电具有很高的不确定性,准确的光伏发电功率预测对于光伏电站的短期调度和发电计划的运行至关重要。提出一种基于多模式分解、多通道输入、并联卷积神经网络(parallel convolutional neural network,PCNN)和双向长短期记忆网络(bi-directional long short term memory,BiLSTM)的组合预测方法,用于不同天气类型的超短期光伏发电功率预测。首先,由相关性分析算法确定辐照度和温度是对光伏发电贡献最大的2个环境变量,并根据环境因素与光伏功率波动特征的关联性将全年数据划分为4类;其次,使用完全集合经验模态分解、奇异谱分解和变分模态分解对辐照度、温度和光伏发电功率进行分解,以降低原始数据的复杂度和非平稳性,实现不同模式模态分量规律互补;最后,建立基于PCNN和BiLSTM的组合预测模型,使用PCNN提取不同的深度特征,并将PCNN输出的特征融合后输入到BiLSTM中,使用BiLSTM建立历史数据之间的时间特征关系,学习历史数据间的正、反向规律,在时空相关性分析的基础上得到最终光伏发电功率预测结果。实验结果表明,提出的组合预测方法在超短期光伏发电功率预测中具有较高的准确性和稳定性,并优于其他深度学习方法。 展开更多
关键词 光伏发电 多通道输入 并联卷积神经网络 双向长短期记忆神经网络 功率预测
下载PDF
考虑特征重要性值波动的MI-BILSTM短期负荷预测 被引量:22
17
作者 孙辉 杨帆 +3 位作者 高正男 胡姝博 王钟辉 刘劲松 《电力系统自动化》 EI CSCD 北大核心 2022年第8期95-103,共9页
在短期负荷预测中,含有循环单元的深度学习模型应用广泛,但训练时采用的权值共享结构具有时不变性,忽略了输入特征(气象、日期、历史负荷值等)在不同时刻下给负荷变化带来的不同影响,即权值共享结构无法追踪输入特征的重要性值波动。针... 在短期负荷预测中,含有循环单元的深度学习模型应用广泛,但训练时采用的权值共享结构具有时不变性,忽略了输入特征(气象、日期、历史负荷值等)在不同时刻下给负荷变化带来的不同影响,即权值共享结构无法追踪输入特征的重要性值波动。针对此问题,提出一种考虑特征重要性值波动的互信息(MI)-双向长短期记忆(BILSTM)网络预测方法。利用MI法提取输入特征在不同时刻下的重要性值,组成重要性值波动矩阵,并将其作为系数修正原输入特征。然后,代入BILSTM网络中完成训练和预测工作,弥补权值共享结构无法追踪特征重要性值波动的缺陷,进一步提高预测精度。最后,以某地区实际电网负荷数据为例,验证所提短期负荷预测方法的有效性。 展开更多
关键词 短期负荷预测 双向长短期记忆网络 权值共享 互信息法
下载PDF
基于长短时记忆网络-纵横交叉算法的含高比例新能源电力市场日前电价预测 被引量:20
18
作者 殷豪 丁伟锋 +3 位作者 陈顺 张铮 曾琮 孟安波 《电网技术》 EI CSCD 北大核心 2022年第2期472-480,共9页
精准的日前电价预测能够协助电力市场参与者做出合理的决策。随着高比例新能源接入电力系统,日前电价的预测难度不断加大。为了提升含高比例新能源电力市场日前电价的预测精度,提出了一种基于奇异谱分析(singular spectrum analysis,SSA... 精准的日前电价预测能够协助电力市场参与者做出合理的决策。随着高比例新能源接入电力系统,日前电价的预测难度不断加大。为了提升含高比例新能源电力市场日前电价的预测精度,提出了一种基于奇异谱分析(singular spectrum analysis,SSA)和纵横交叉算法(crisscross optimization,CSO)优化长短时记忆网络(long short-term memory,LSTM)的日前电价预测模型。首先,使用SSA将原始数据分解成趋势序列、周期序列和剩余序列;其次,对各子序列建立LSTM多步预测模型,针对LSTM的全连接输出层参数易陷入局部最优的问题,提出了二次训练LSTM策略,在训练好LSTM模型后,使用CSO算法对全连接层间的权系数与偏置进行微调;最后,将所有预测序列进行叠加即得最终的电价预测值。以北欧丹麦DK1电力市场数据进行了建模预测,实验结果表明所提方法能够有效提高日前电价的预测精度。 展开更多
关键词 电力市场 高比例新能源 日前电价 奇异谱分析 长短时记忆网络 纵横交叉算法
下载PDF
基于LSTM网络鄱阳湖抚河流域径流模拟研究 被引量:21
19
作者 姜淞川 陆建忠 +1 位作者 陈晓玲 刘子旋 《华中师范大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第1期128-139,共12页
水文预报及其径流变化趋势预测能够为防汛工作提供辅助决策,是水库调度兴利的重要手段.与传统分布式水文模型相比,利用长短期记忆网络(LSTM)建立降雨径流预报模型具有简单可行和精度较高的优点.该文以鄱阳湖抚河流域为研究对象,采用抚... 水文预报及其径流变化趋势预测能够为防汛工作提供辅助决策,是水库调度兴利的重要手段.与传统分布式水文模型相比,利用长短期记忆网络(LSTM)建立降雨径流预报模型具有简单可行和精度较高的优点.该文以鄱阳湖抚河流域为研究对象,采用抚河流域的降雨和径流数据分别作为模型驱动数据和标签数据,通过LSTM网络实现抚河流域的径流模拟工作.结果表明:在使用气象站数据建立的日尺度径流模拟模型中,模拟结果与实测值相关性均达到0.9以上,偏差在±5%以内,模型表现非常好;在使用TRMM数据建立的月尺度模型中,整体模拟结果与实测值相关性在0.9以上,整体偏差在±5%以内,模型表现优秀. 展开更多
关键词 深度学习 神经网络 径流模拟 长短期记忆网络 鄱阳湖抚河流域
下载PDF
长短时记忆神经网络在地电场数据处理中的应用 被引量:21
20
作者 汪凯翔 黄清华 吴思弘 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2020年第8期3015-3024,共10页
作为深度学习方法的一种,长短时记忆神经网络(LSTM)是一种信号处理的重要方法.本文基于实际观测地电场数据来合成训练集,对特定结构的长短时记忆神经网络进行训练,将训练所得网络对测试集数据进行测试后,将网络应用至实际观测数据.结果... 作为深度学习方法的一种,长短时记忆神经网络(LSTM)是一种信号处理的重要方法.本文基于实际观测地电场数据来合成训练集,对特定结构的长短时记忆神经网络进行训练,将训练所得网络对测试集数据进行测试后,将网络应用至实际观测数据.结果显示,经过训练的网络很好地学到了训练集样本的特征,对测试集数据的信噪比压制了约20 dB,并过滤了人为添加的特定频率的干扰成分,对实际观测数据处理后得到明显的日变、半日变以及半月变、月变、半年变、年变等潮汐响应,表明长短时记忆神经网络可以有效应用于地电场数据处理研究. 展开更多
关键词 地电场 长短时记忆神经网络 信号处理 潮汐响应
下载PDF
上一页 1 2 244 下一页 到第
使用帮助 返回顶部