期刊文献+
共找到5,513篇文章
< 1 2 250 >
每页显示 20 50 100
基于长短时记忆与多影响因子的滑坡位移动态预测 被引量:19
1
作者 李丽敏 郭伏 +2 位作者 温宗周 陈鹏年 张顺锋 《科学技术与工程》 北大核心 2020年第33期13559-13567,共9页
针对传统滑坡位移预测模型存在对历史数据遗忘的问题,提出了一种基于长短时记忆(long short time memory,LSTM)网络的滑坡位移动态预测模型。首先,将滑坡累计位移分解为趋势项位移与波动项位移,利用多项式拟合预测趋势项位移;然后,通过... 针对传统滑坡位移预测模型存在对历史数据遗忘的问题,提出了一种基于长短时记忆(long short time memory,LSTM)网络的滑坡位移动态预测模型。首先,将滑坡累计位移分解为趋势项位移与波动项位移,利用多项式拟合预测趋势项位移;然后,通过灰色关联度筛选外界诱发因子并运用LSTM模型预测波动项位移;最后,叠加周期项位移与波动项位移,得到累计位移。以新滩滑坡为例,并与(recurrent neural network,RNN)模型以及传统静态神经网络模型BP、ELM进行对比分析,采用平均百分比误差(MAPE),均方根误差(RMSE),拟合优度(R 2)分别对其进行评价。应用结果表明:相比于传统静态模型,LSTM与RNN均适用于滑坡位移动态预测;对比结果显示,LSTM模型具有较好的预测精度,MAPE与RMSE分别为1.026%、0.327 mm,拟合优度R 2为0.978。 展开更多
关键词 长短时记忆 循环神经网络 滑坡灾害 位移预测
下载PDF
Machine learning for pore-water pressure time-series prediction:Application of recurrent neural networks 被引量:18
2
作者 Xin Wei Lulu Zhang +2 位作者 Hao-Qing Yang Limin Zhang Yang-Ping Yao 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第1期453-467,共15页
Knowledge of pore-water pressure(PWP)variation is fundamental for slope stability.A precise prediction of PWP is difficult due to complex physical mechanisms and in situ natural variability.To explore the applicabilit... Knowledge of pore-water pressure(PWP)variation is fundamental for slope stability.A precise prediction of PWP is difficult due to complex physical mechanisms and in situ natural variability.To explore the applicability and advantages of recurrent neural networks(RNNs)on PWP prediction,three variants of RNNs,i.e.,standard RNN,long short-term memory(LSTM)and gated recurrent unit(GRU)are adopted and compared with a traditional static artificial neural network(ANN),i.e.,multi-layer perceptron(MLP).Measurements of rainfall and PWP of representative piezometers from a fully instrumented natural slope in Hong Kong are used to establish the prediction models.The coefficient of determination(R^2)and root mean square error(RMSE)are used for model evaluations.The influence of input time series length on the model performance is investigated.The results reveal that MLP can provide acceptable performance but is not robust.The uncertainty bounds of RMSE of the MLP model range from 0.24 kPa to 1.12 k Pa for the selected two piezometers.The standard RNN can perform better but the robustness is slightly affected when there are significant time lags between PWP changes and rainfall.The GRU and LSTM models can provide more precise and robust predictions than the standard RNN.The effects of the hidden layer structure and the dropout technique are investigated.The single-layer GRU is accurate enough for PWP prediction,whereas a double-layer GRU brings extra time cost with little accuracy improvement.The dropout technique is essential to overfitting prevention and improvement of accuracy. 展开更多
关键词 Pore-water pressure SLOPE Multi-layer perceptron Recurrent neural networks long short-term memory Gated recurrent unit
下载PDF
Cybersecurity Named Entity Recognition Using Bidirectional Long Short-Term Memory with Conditional Random Fields 被引量:15
3
作者 Pingchuan Ma Bo Jiang +2 位作者 Zhigang Lu Ning Li Zhengwei Jiang 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2021年第3期259-265,共7页
Network texts have become important carriers of cybersecurity information on the Internet.These texts include the latest security events such as vulnerability exploitations,attack discoveries,advanced persistent threa... Network texts have become important carriers of cybersecurity information on the Internet.These texts include the latest security events such as vulnerability exploitations,attack discoveries,advanced persistent threats,and so on.Extracting cybersecurity entities from these unstructured texts is a critical and fundamental task in many cybersecurity applications.However,most Named Entity Recognition(NER)models are suitable only for general fields,and there has been little research focusing on cybersecurity entity extraction in the security domain.To this end,in this paper,we propose a novel cybersecurity entity identification model based on Bidirectional Long Short-Term Memory with Conditional Random Fields(Bi-LSTM with CRF)to extract security-related concepts and entities from unstructured text.This model,which we have named XBi LSTM-CRF,consists of a word-embedding layer,a bidirectional LSTM layer,and a CRF layer,and concatenates X input with bidirectional LSTM output.Via extensive experiments on an open-source dataset containing an office security bulletin,security blogs,and the Common Vulnerabilities and Exposures list,we demonstrate that XBi LSTM-CRF achieves better cybersecurity entity extraction than state-of-the-art models. 展开更多
关键词 security blogs long short-Term memory(LSTM) Named Entity Recognition(NER)
原文传递
Dynamic Hand Gesture Recognition Based on Short-Term Sampling Neural Networks 被引量:12
4
作者 Wenjin Zhang Jiacun Wang Fangping Lan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第1期110-120,共11页
Hand gestures are a natural way for human-robot interaction.Vision based dynamic hand gesture recognition has become a hot research topic due to its various applications.This paper presents a novel deep learning netwo... Hand gestures are a natural way for human-robot interaction.Vision based dynamic hand gesture recognition has become a hot research topic due to its various applications.This paper presents a novel deep learning network for hand gesture recognition.The network integrates several well-proved modules together to learn both short-term and long-term features from video inputs and meanwhile avoid intensive computation.To learn short-term features,each video input is segmented into a fixed number of frame groups.A frame is randomly selected from each group and represented as an RGB image as well as an optical flow snapshot.These two entities are fused and fed into a convolutional neural network(Conv Net)for feature extraction.The Conv Nets for all groups share parameters.To learn longterm features,outputs from all Conv Nets are fed into a long short-term memory(LSTM)network,by which a final classification result is predicted.The new model has been tested with two popular hand gesture datasets,namely the Jester dataset and Nvidia dataset.Comparing with other models,our model produced very competitive results.The robustness of the new model has also been proved with an augmented dataset with enhanced diversity of hand gestures. 展开更多
关键词 Convolutional neural network(ConvNet) hand gesture recognition long short-term memory(LSTM)network short-term sampling transfer learning
下载PDF
Time Series Forecasting: Analysis of LSTM Neural Networks to Predict Exchange Rates of Currencies 被引量:10
5
作者 Samith WIJESINGHE 《Instrumentation》 2020年第4期25-39,共15页
The global financial and economic market is now made up of several structures that are powerful and complex.In the last few decades,a few techniques and theories have been implemented that have revolutionized the unde... The global financial and economic market is now made up of several structures that are powerful and complex.In the last few decades,a few techniques and theories have been implemented that have revolutionized the understanding of those systems to forecast financial markets based on time series analysis.However still,none has been shown to function successfully consistently.In this project,a special form of Neural Network Modeling called LSTM to forecast the foreign exchange rate of currencies.In several different forecasting applications,this method of modelling has become popular as it can be defined complex non-linear relationships between variables and the outcome it wishes to predict.In compare to the stock market,exchange rates tend to be more relevant due to the availability of macroeconomic data that can be used to train the network to learn the impact of particular variables on the rate to be predicted.The information was collected using Quandl,an economic and financial platform that offers quantitative indicators for a wide variety of countries.Model is compared with three different metrics by exponential moving average and an autoregressive integrated moving average.then compare and validate the ability of the model to reliably predict future values and compare which of the models predicted the most correctly. 展开更多
关键词 Forex Prediction System long short-term memory(LSTM)Forex Forecasting Deep Learning
下载PDF
α脑电波音乐对中学生记忆的改善作用 被引量:9
6
作者 李洁 安博 +2 位作者 崔玮 荆雷 卢莉 《中国心理卫生杂志》 CSSCI CSCD 北大核心 2012年第4期283-286,共4页
目的:探讨α脑电波音乐对中学生记忆的改善作用。方法:采用方便取样,选取太原市某中学初二年级4个班,随机分成空白对照组(不受任何声音刺激)(n=22),巴洛克音乐组(n=26)及双脑同步共振音乐组(n=31)两个α脑电波音乐组,以及古典音乐组(n=... 目的:探讨α脑电波音乐对中学生记忆的改善作用。方法:采用方便取样,选取太原市某中学初二年级4个班,随机分成空白对照组(不受任何声音刺激)(n=22),巴洛克音乐组(n=26)及双脑同步共振音乐组(n=31)两个α脑电波音乐组,以及古典音乐组(n=20)。干预阶段,主试连续5天为对照组除外的3组学生播放相应曲目,每次30分钟。干预前后,用短时记忆和长时记忆测试方法对4组学生进行记忆测试。结果:巴洛克音乐组、双脑同步共振音乐组、古典音乐组的图像型长时记忆测试前后得分差值均高于对照组(均P<0.05);巴洛克音乐组的声像型长时记忆测试的前后得分差值高于对照组(P<0.05)。结论:双脑同步共振音乐可改善中学生图像型长时记忆,但对于短时记忆、声像型长时记忆无改善;巴洛克音乐可以同时改善中学生的图像型和声像型长时记忆,但对于短时记忆无改善;古典音乐可以改善中学生的图像型长时记忆,对于声像型长时记忆和短时记忆无改善。 展开更多
关键词 音乐 α脑电波 长时记忆 短时记忆 图像记忆 声像记忆 横断面研究
下载PDF
Classification of Short Time Series in Early Parkinson’s Disease With Deep Learning of Fuzzy Recurrence Plots 被引量:9
7
作者 Tuan D.Pham Karin Wardell +1 位作者 Anders Eklund Goran Salerud 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2019年第6期1306-1317,共12页
There are many techniques using sensors and wearable devices for detecting and monitoring patients with Parkinson’s disease(PD).A recent development is the utilization of human interaction with computer keyboards for... There are many techniques using sensors and wearable devices for detecting and monitoring patients with Parkinson’s disease(PD).A recent development is the utilization of human interaction with computer keyboards for analyzing and identifying motor signs in the early stages of the disease.Current designs for classification of time series of computer-key hold durations recorded from healthy control and PD subjects require the time series of length to be considerably long.With an attempt to avoid discomfort to participants in performing long physical tasks for data recording,this paper introduces the use of fuzzy recurrence plots of very short time series as input data for the machine training and classification with long short-term memory(LSTM)neural networks.Being an original approach that is able to both significantly increase the feature dimensions and provides the property of deterministic dynamical systems of very short time series for information processing carried out by an LSTM layer architecture,fuzzy recurrence plots provide promising results and outperform the direct input of the time series for the classification of healthy control and early PD subjects. 展开更多
关键词 Deep learning early Parkinson’s disease(PD) fuzzy recurrence plots long short-term memory(LSTM) neural networks pattern classification short time series
下载PDF
TBM penetration rate prediction based on the long short-term memory neural network 被引量:9
8
作者 Boyang Gao RuiRui Wang +3 位作者 Chunjin Lin Xu Guo Bin Liu Wengang Zhang 《Underground Space》 SCIE EI 2021年第6期718-731,共14页
Tunnel boring machines(TBMs)are widely used in tunnel engineering because of their safety and efficiency.The TBM penetration rate(PR)is crucial,as its real-time prediction can reflect the adaptation of a TBM under cur... Tunnel boring machines(TBMs)are widely used in tunnel engineering because of their safety and efficiency.The TBM penetration rate(PR)is crucial,as its real-time prediction can reflect the adaptation of a TBM under current geological conditions and assist the adjustment of operating parameters.In this study,deep learning technology is applied to TBM performance prediction,and a PR prediction model based on a long short-term memory(LSTM)neuron network is proposed.To verify the performance of the proposed model,the machine parameters,rock mass parameters,and geological survey data from the water conveyance tunnel of the Hangzhou Second Water Source project were collected to form a dataset.Furthermore,2313 excavation cycles were randomly composed of training datasets to train the LSTM-based model,and 257 excavation cycles were used as a testing dataset to test the performance.The root mean square error and the mean absolute error of the proposed model are 4.733 and 3.204,respectively.Compared with Recurrent neuron network(RNN)based model and traditional time-series prediction model autoregressive integrated moving average with explanation variables(ARIMAX),the overall performance on proposed model is better.Moreover,in the rapidly increasing period of the PR,the error of the LSTM-based model prediction curve is significantly smaller than those of the other two models.The prediction results indicate that the LSTM-based model proposed herein is relatively accurate,thereby providing guidance for the excavation process of TBMs and offering practical application value. 展开更多
关键词 TBM performance prediction Penetration rate long short-term memory Water conveyance tunnel
原文传递
Remaining Useful Life Prediction of Turbofan Engine Using Hybrid Model Based on Autoencoder and Bidirectional Long Short-Term Memory 被引量:9
9
作者 SONG Ya SHI Guo +2 位作者 CHEN Leyi HUANG Xinpei XIA Tangbin 《Journal of Shanghai Jiaotong university(Science)》 EI 2018年第S1期85-94,共10页
Turbofan engine is a critical aircraft component with complex structure and high-reliability requirements. Effectively predicting the remaining useful life(RUL) of turbofan engines has essential significance for devel... Turbofan engine is a critical aircraft component with complex structure and high-reliability requirements. Effectively predicting the remaining useful life(RUL) of turbofan engines has essential significance for developing maintenance strategies and reducing maintenance costs. Considering the characteristics of large sample size and high dimension of monitoring data, a hybrid health condition prediction model integrating the advantages of autoencoder and bidirectional long short-term memory(BLSTM) is proposed to improve the prediction accuracy of RUL. Autoencoder is used as a feature extractor to compress condition monitoring data. BLSTM is designed to capture the bidirectional long-range dependencies of features. A hybrid deep learning prediction model of RUL is constructed. This model has been tested on a benchmark dataset. The results demonstrate that this autoencoder-BLSTM hybrid model has a better prediction accuracy than the existing methods, such as multi-layer perceptron(MLP), support vector regression(SVR), convolutional neural network(CNN) and long short-term memory(LSTM). The proposed model can provide strong support for the health management and maintenance strategy development of turbofan engines. 展开更多
关键词 remaining useful life(RUL) autoencoder bidirectional long short-term memory(BLSTM) deep learning
原文传递
Hourly traffic flow forecasting using a new hybrid modelling method 被引量:9
10
作者 LIU Hui ZHANG Xin-yu +2 位作者 YANG Yu-xiang LI Yan-fei YU Cheng-qing 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第4期1389-1402,共14页
Short-term traffic flow forecasting is a significant part of intelligent transportation system.In some traffic control scenarios,obtaining future traffic flow in advance is conducive to highway management department t... Short-term traffic flow forecasting is a significant part of intelligent transportation system.In some traffic control scenarios,obtaining future traffic flow in advance is conducive to highway management department to have sufficient time to formulate corresponding traffic flow control measures.In hence,it is meaningful to establish an accurate short-term traffic flow method and provide reference for peak traffic flow warning.This paper proposed a new hybrid model for traffic flow forecasting,which is composed of the variational mode decomposition(VMD)method,the group method of data handling(GMDH)neural network,bi-directional long and short term memory(BILSTM)network and ELMAN network,and is optimized by the imperialist competitive algorithm(ICA)method.To illustrate the performance of the proposed model,there are several comparative experiments between the proposed model and other models.The experiment results show that 1)BILSTM network,GMDH network and ELMAN network have better predictive performance than other single models;2)VMD can significantly improve the predictive performance of the ICA-GMDH-BILSTM-ELMAN model.The effect of VMD method is better than that of EEMD method and FEEMD method.To conclude,the proposed model which is made up of the VMD method,the ICA method,the BILSTM network,the GMDH network and the ELMAN network has excellent predictive ability for traffic flow series. 展开更多
关键词 traffic flow forecasting intelligent transportation system imperialist competitive algorithm variational mode decomposition group method of data handling bi-directional long and short term memory ELMAN
下载PDF
Power entity recognition based on bidirectional long short-term memory and conditional random fields 被引量:8
11
作者 Zhixiang Ji Xiaohui Wang +1 位作者 Changyu Cai Hongjian Sun 《Global Energy Interconnection》 2020年第2期186-192,共7页
With the application of artificial intelligence technology in the power industry,the knowledge graph is expected to play a key role in power grid dispatch processes,intelligent maintenance,and customer service respons... With the application of artificial intelligence technology in the power industry,the knowledge graph is expected to play a key role in power grid dispatch processes,intelligent maintenance,and customer service response provision.Knowledge graphs are usually constructed based on entity recognition.Specifically,based on the mining of entity attributes and relationships,domain knowledge graphs can be constructed through knowledge fusion.In this work,the entities and characteristics of power entity recognition are analyzed,the mechanism of entity recognition is clarified,and entity recognition techniques are analyzed in the context of the power domain.Power entity recognition based on the conditional random fields (CRF) and bidirectional long short-term memory (BLSTM) models is investigated,and the two methods are comparatively analyzed.The results indicated that the CRF model,with an accuracy of 83%,can better identify the power entities compared to the BLSTM.The CRF approach can thus be applied to the entity extraction for knowledge graph construction in the power field. 展开更多
关键词 Knowledge graph Entity recognition Conditional Random Fields(CRF) Bidirectional long short-Term memory(BLSTM)
下载PDF
A hybrid Wavelet-CNN-LSTM deep learning model for short-term urban water demand forecasting 被引量:6
12
作者 Zhengheng Pu Jieru Yan +4 位作者 Lei Chen Zhirong Li Wenchong Tian Tao Tao Kunlun Xin 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2023年第2期97-110,共14页
Short-term water demand forecasting provides guidance on real-time water allocation in the water supply network, which help water utilities reduce energy cost and avoid potential accidents. Although a variety of metho... Short-term water demand forecasting provides guidance on real-time water allocation in the water supply network, which help water utilities reduce energy cost and avoid potential accidents. Although a variety of methods have been proposed to improve forecast accuracy, it is still difficult for statistical models to learn the periodic patterns due to the chaotic nature of the water demand data with high temporal resolution. To overcome this issue from the perspective of improving data predictability, we proposed a hybrid Wavelet-CNN-LSTM model, that combines time-frequency decomposition characteristics of Wavelet Multi-Resolution Analysis (MRA) and implement it into an advanced deep learning model, CNN-LSTM. Four models - ANN, Conv1D, LSTM, GRUN - are used to compare with Wavelet-CNN-LSTM, and the results show that Wavelet-CNN-LSTM outperforms the other models both in single-step and multi-steps prediction. Besides, further mechanistic analysis revealed that MRA produce significant effect on improving model accuracy. 展开更多
关键词 short-term water demand forecasting long-short term memory neural network Convolutional Neural Network Wavelet multi-resolution analysis Data-driven models
原文传递
LSTM-based Energy Management for Electric Vehicle Charging in Commercial-building Prosumers 被引量:7
13
作者 Huayanran Zhou Yihong Zhou +4 位作者 Junjie Hu Guangya Yang Dongliang Xie Yusheng Xue Lars Nordström 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2021年第5期1205-1216,共12页
As typical prosumers,commercial buildings equipped with electric vehicle(EV)charging piles and solar photovoltaic panels require an effective energy management method.However,the conventional optimization-model-based ... As typical prosumers,commercial buildings equipped with electric vehicle(EV)charging piles and solar photovoltaic panels require an effective energy management method.However,the conventional optimization-model-based building energy management system faces significant challenges regarding prediction and calculation in online execution.To address this issue,a long short-term memory(LSTM)recurrent neural network(RNN)based machine learning algorithm is proposed in this paper to schedule the charging and discharging of numerous EVs in commercial-building prosumers.Under the proposed system control structure,the LSTM algorithm can be separated into offline and online stages.At the offline stage,the LSTM is used to map states(inputs)to decisions(outputs)based on the network training.At the online stage,once the current state is input,the LSTM can quickly generate a solution without any additional prediction.A preliminary data processing rule and an additional output filtering procedure are designed to improve the decision performance of LSTM network.The simulation results demonstrate that the LSTM algorithm can generate near-optimal solutions in milliseconds and significantly reduce the prediction and calculation pressures compared with the conventional optimization algorithm. 展开更多
关键词 Building energy management system(BEMS) electric vehicle(EV) long short-term memory(LSTM) recurrent neural network machine learning prosumer
原文传递
Data-driven unsupervised anomaly detection and recovery of unmanned aerial vehicle flight data based on spatiotemporal correlation 被引量:6
14
作者 YANG Lei LI ShaoBo +3 位作者 LI ChuanJiang ZHU CaiChao ZHANG AnSi LIANG GuoQiang 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2023年第5期1304-1316,共13页
Anomaly detection is crucial to the flight safety and maintenance of unmanned aerial vehicles(UAVs)and has attracted extensive attention from scholars.Knowledge-based approaches rely on prior knowledge,while model-bas... Anomaly detection is crucial to the flight safety and maintenance of unmanned aerial vehicles(UAVs)and has attracted extensive attention from scholars.Knowledge-based approaches rely on prior knowledge,while model-based approaches are challenging for constructing accurate and complex physical models of unmanned aerial systems(UASs).Although data-driven methods do not require extensive prior knowledge and accurate physical UAS models,they often lack parameter selection and are limited by the cost of labeling anomalous data.Furthermore,flight data with random noise pose a significant challenge for anomaly detection.This work proposes a spatiotemporal correlation based on long short-term memory and autoencoder(STCLSTM-AE)neural network data-driven method for unsupervised anomaly detection and recovery of UAV flight data.First,UAV flight data are preprocessed by combining the Savitzky-Golay filter data processing technique to mitigate the effect of noise in the original historical flight data on the model.Correlation-based feature subset selection is subsequently performed to reduce the reliance on expert knowledge.Then,the extracted features are used as the input of the designed LSTM-AE model to achieve the anomaly detection and recovery of UAV flight data in an unsupervised manner.Finally,the method's effectiveness is validated on real UAV flight data. 展开更多
关键词 unmanned aerial vehicle(UAV) anomaly detection spatiotemporal correlation based on long short-term memory and autoencoder(STC-LSTM-AE) Savitzky-Golay feature selection
原文传递
A forecasting model for wave heights based on a long short-term memory neural network 被引量:7
15
作者 Song Gao Juan Huang +3 位作者 Yaru Li Guiyan Liu Fan Bi Zhipeng Bai 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2021年第1期62-69,共8页
To explore new operational forecasting methods of waves,a forecasting model for wave heights at three stations in the Bohai Sea has been developed.This model is based on long short-term memory(LSTM)neural network with... To explore new operational forecasting methods of waves,a forecasting model for wave heights at three stations in the Bohai Sea has been developed.This model is based on long short-term memory(LSTM)neural network with sea surface wind and wave heights as training samples.The prediction performance of the model is evaluated,and the error analysis shows that when using the same set of numerically predicted sea surface wind as input,the prediction error produced by the proposed LSTM model at Sta.N01 is 20%,18%and 23%lower than the conventional numerical wave models in terms of the total root mean square error(RMSE),scatter index(SI)and mean absolute error(MAE),respectively.Particularly,for significant wave height in the range of 3–5 m,the prediction accuracy of the LSTM model is improved the most remarkably,with RMSE,SI and MAE all decreasing by 24%.It is also evident that the numbers of hidden neurons,the numbers of buoys used and the time length of training samples all have impact on the prediction accuracy.However,the prediction does not necessary improve with the increase of number of hidden neurons or number of buoys used.The experiment trained by data with the longest time length is found to perform the best overall compared to other experiments with a shorter time length for training.Overall,long short-term memory neural network was proved to be a very promising method for future development and applications in wave forecasting. 展开更多
关键词 long short-term memory marine forecast neural network significant wave height
下载PDF
A self-adaptive,data-driven method to predict the cycling life of lithium-ion batteries 被引量:3
16
作者 Chao Han Yu-Chen Gao +5 位作者 Xiang Chen Xinyan Liu Nan Yao Legeng Yu Long Kong Qiang Zhang 《InfoMat》 SCIE CSCD 2024年第4期47-55,共9页
Accurately forecasting the nonlinear degradation of lithium-ion batteries(LIBs)using early-cycle data can obviously shorten the battery test time,which accelerates battery optimization and production.In this work,a se... Accurately forecasting the nonlinear degradation of lithium-ion batteries(LIBs)using early-cycle data can obviously shorten the battery test time,which accelerates battery optimization and production.In this work,a self-adaptive long short-term memory(SA-LSTM)method has been proposed to predict the battery degradation trajectory and battery lifespan with only early cycling data.Specifically,two features were extracted from discharge voltage curves by a time-series-based approach and forecasted to further cycles using SA-LSTM model.The as-obtained features were correlated with the capacity to predict the capacity degradation trajectory by generalized multiple linear regression model.The proposed method achieved an average online prediction error of 6.00%and 6.74%for discharge capacity and end of life,respectively,when using the early-cycle discharge information until 90%capacity retention.Fur-thermore,the importance of temperature control was highlighted by correlat-ing the features with the average temperature in each cycle.This work develops a self-adaptive data-driven method to accurately predict the cycling life of LIBs,and unveils the underlying degradation mechanism and the impor-tance of controlling environmental temperature. 展开更多
关键词 cycling lifespan prediction lithium-ion batteries long short-term memory method machine learning time series forecasting
原文传递
Slope stability prediction based on a long short-term memory neural network:comparisons with convolutional neural networks,support vector machines and random forest models 被引量:6
17
作者 Faming Huang Haowen Xiong +4 位作者 Shixuan Chen Zhitao Lv Jinsong Huang Zhilu Chang Filippo Catani 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第2期83-96,共14页
The numerical simulation and slope stability prediction are the focus of slope disaster research.Recently,machine learning models are commonly used in the slope stability prediction.However,these machine learning mode... The numerical simulation and slope stability prediction are the focus of slope disaster research.Recently,machine learning models are commonly used in the slope stability prediction.However,these machine learning models have some problems,such as poor nonlinear performance,local optimum and incomplete factors feature extraction.These issues can affect the accuracy of slope stability prediction.Therefore,a deep learning algorithm called Long short-term memory(LSTM)has been innovatively proposed to predict slope stability.Taking the Ganzhou City in China as the study area,the landslide inventory and their characteristics of geotechnical parameters,slope height and slope angle are analyzed.Based on these characteristics,typical soil slopes are constructed using the Geo-Studio software.Five control factors affecting slope stability,including slope height,slope angle,internal friction angle,cohesion and volumetric weight,are selected to form different slope and construct model input variables.Then,the limit equilibrium method is used to calculate the stability coefficients of these typical soil slopes under different control factors.Each slope stability coefficient and its corresponding control factors is a slope sample.As a result,a total of 2160 training samples and 450 testing samples are constructed.These sample sets are imported into LSTM for modelling and compared with the support vector machine(SVM),random forest(RF)and convo-lutional neural network(CNN).The results show that the LSTM overcomes the problem that the commonly used machine learning models have difficulty extracting global features.Furthermore,LSTM has a better prediction performance for slope stability compared to SVM,RF and CNN models. 展开更多
关键词 Slope stability prediction long short-term memory Deep learning Geo-Studio software Machine learning model
下载PDF
Multivariate Deep Learning Approach for Electric Vehicle Speed Forecasting 被引量:7
18
作者 Youssef Nait Malek Mehdi Najib +1 位作者 Mohamed Bakhouya Mohammed Essaaidi 《Big Data Mining and Analytics》 EI 2021年第1期56-64,共9页
Speed forecasting has numerous applications in intelligent transport systems’design and control,especially for safety and road efficiency applications.In the field of electromobility,it represents the most dynamic pa... Speed forecasting has numerous applications in intelligent transport systems’design and control,especially for safety and road efficiency applications.In the field of electromobility,it represents the most dynamic parameter for efficient online in-vehicle energy management.However,vehicles’speed forecasting is a challenging task,because its estimation is closely related to various features,which can be classified into two categories,endogenous and exogenous features.Endogenous features represent electric vehicles’characteristics,whereas exogenous ones represent its surrounding context,such as traffic,weather,and road conditions.In this paper,a speed forecasting method based on the Long Short-Term Memory(LSTM)is introduced.The LSTM model training is performed upon a dataset collected from a traffic simulator based on real-world data representing urban itineraries.The proposed models are generated for univariate and multivariate scenarios and are assessed in terms of accuracy for speed forecasting.Simulation results show that the multivariate model outperforms the univariate model for short-and long-term forecasting. 展开更多
关键词 Electric Vehicle(EV) multivariate long short-Term memory(LSTM) speed forecasting deep learning
原文传递
Improved Dota2 Lineup Recommendation Model Based on a Bidirectional LSTM 被引量:7
19
作者 Lei Zhang Chenbo Xu +3 位作者 Yihua Gao Yi Han Xiaojiang Du Zhihong Tian 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2020年第6期712-720,共9页
In recent years,e-sports has rapidly developed,and the industry has produced large amounts of data with specifications,and these data are easily to be obtained.Due to the above characteristics,data mining and deep lea... In recent years,e-sports has rapidly developed,and the industry has produced large amounts of data with specifications,and these data are easily to be obtained.Due to the above characteristics,data mining and deep learning methods can be used to guide players and develop appropriate strategies to win games.As one of the world’s most famous e-sports events,Dota2 has a large audience base and a good game system.A victory in a game is often associated with a hero’s match,and players are often unable to pick the best lineup to compete.To solve this problem,in this paper,we present an improved bidirectional Long Short-Term Memory(LSTM)neural network model for Dota2 lineup recommendations.The model uses the Continuous Bag Of Words(CBOW)model in the Word2 vec model to generate hero vectors.The CBOW model can predict the context of a word in a sentence.Accordingly,a word is transformed into a hero,a sentence into a lineup,and a word vector into a hero vector,the model applied in this article recommends the last hero according to the first four heroes selected first,thereby solving a series of recommendation problems. 展开更多
关键词 Word2vec mutiplayer online battle arena games Continuous Bag Of Words(CBOW)model long short-Term memory(LSTM)
原文传递
EMD-Att-LSTM: A Data-driven Strategy Combined with Deep Learning for Short-term Load Forecasting 被引量:6
20
作者 Neeraj Jimson Mathew Ranjan Kumar Behera 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2022年第5期1229-1240,共12页
Electric load forecasting is an efficient tool for system planning, and consequently, building sustainable power systems. However, achieving desirable performance is difficult owing to the irregular, nonstationary, no... Electric load forecasting is an efficient tool for system planning, and consequently, building sustainable power systems. However, achieving desirable performance is difficult owing to the irregular, nonstationary, nonlinear, and noisy nature of the observed data. Therefore, a new attention-based encoderdecoder model is proposed, called empirical mode decomposition-attention-long short-term memory(EMD-Att-LSTM).EMD is a data-driven technique used for the decomposition of complex series into subsequent simpler series. It explores the inherent properties of data to obtain the components such as trend and seasonality. Neural network architecture driven by deep learning uses the idea of a fine-grained attention mechanism, that is, considering the hidden state instead of the hidden state vectors, which can help reflect the significance and contributions of each hidden state dimension. In addition, it is useful for locating and concentrating the relevant temporary data,leading to a distinctly interpretable network. To evaluate the proposed model, we use the repository dataset of Australian energy market operator(AEMO). The proposed architecture provides superior empirical results compared with other advanced models. It is explored using the indices of root mean square error(RMSE) and mean absolute percentage error(MAPE). 展开更多
关键词 short-term load forecasting Australian energy market operator long short-term memory(LSTM) empirical mode decomposition(EMD) attention mechanism
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部