为准确预测电力市场中的短期电价,将最大信息系数(maximal information coefficient,MIC)相关性分析与改进多层级门控长短期记忆网络(multi-hierachy gated long shortterm memory,MHG-LSTM)相结合,提出一种新型短期电价预测方法。该方...为准确预测电力市场中的短期电价,将最大信息系数(maximal information coefficient,MIC)相关性分析与改进多层级门控长短期记忆网络(multi-hierachy gated long shortterm memory,MHG-LSTM)相结合,提出一种新型短期电价预测方法。该方法首先对备选序列与预测电价序列做MIC相关性分析,在此基础上筛选备选序列并经小波变换合成神经网络输入序列,有效增加了输入中与预测电价相关的信息密度;其次,对传统LSTM进行创新性改进,提出用两级遗忘门和输入门替换传统的一级门控机构的MHG-LSTM模型,提高了神经网络选择和提取高频电价序列特征的能力。在PJM市场日前电价数据集上对所提方法进行仿真实验,实验结果表明,该方法的预测误差仅为4.506%,相比已有预测方法有效提升了短期电价的预测精度,且具有很强的普适性,可应用于电力市场短期电价预测,为市场参与者和监管机构提供有力决策依据。展开更多
为解决盾构竖向姿态的精确预测问题,提出一种基于长短期记忆(long short term memory,LSTM)神经网络-支持向量回归(support vector regression,SVR)的深度学习组合预测模型。在对采集到的竖向姿态数据进行相应的数据预处理的基础上,分...为解决盾构竖向姿态的精确预测问题,提出一种基于长短期记忆(long short term memory,LSTM)神经网络-支持向量回归(support vector regression,SVR)的深度学习组合预测模型。在对采集到的竖向姿态数据进行相应的数据预处理的基础上,分别构建LSTM、SVR竖向姿态预测模型,并基于最优组合赋权的方式对二者的预测结果进行赋权,以得到LSTM-SVR盾构竖向姿态组合预测模型。为验证所构建的LSTM-SVR组合深度学习预测模型的可靠性,依托昆明地铁项目,将预测结果与LSTM、SVR、BP(back propagation)模型的预测结果进行对比。结果表明:所构建的LSTM-SVR组合深度学习预测模型具有较高的预测精度。展开更多
文摘为准确预测电力市场中的短期电价,将最大信息系数(maximal information coefficient,MIC)相关性分析与改进多层级门控长短期记忆网络(multi-hierachy gated long shortterm memory,MHG-LSTM)相结合,提出一种新型短期电价预测方法。该方法首先对备选序列与预测电价序列做MIC相关性分析,在此基础上筛选备选序列并经小波变换合成神经网络输入序列,有效增加了输入中与预测电价相关的信息密度;其次,对传统LSTM进行创新性改进,提出用两级遗忘门和输入门替换传统的一级门控机构的MHG-LSTM模型,提高了神经网络选择和提取高频电价序列特征的能力。在PJM市场日前电价数据集上对所提方法进行仿真实验,实验结果表明,该方法的预测误差仅为4.506%,相比已有预测方法有效提升了短期电价的预测精度,且具有很强的普适性,可应用于电力市场短期电价预测,为市场参与者和监管机构提供有力决策依据。
文摘为解决盾构竖向姿态的精确预测问题,提出一种基于长短期记忆(long short term memory,LSTM)神经网络-支持向量回归(support vector regression,SVR)的深度学习组合预测模型。在对采集到的竖向姿态数据进行相应的数据预处理的基础上,分别构建LSTM、SVR竖向姿态预测模型,并基于最优组合赋权的方式对二者的预测结果进行赋权,以得到LSTM-SVR盾构竖向姿态组合预测模型。为验证所构建的LSTM-SVR组合深度学习预测模型的可靠性,依托昆明地铁项目,将预测结果与LSTM、SVR、BP(back propagation)模型的预测结果进行对比。结果表明:所构建的LSTM-SVR组合深度学习预测模型具有较高的预测精度。