The approximate expressions of the travelling wave solutions for a class of nonlinear disturbed long-wave system are constructed using the generalized variational iteration method.
This article is concerned with the extended homogeneous balance method for studying the abundant localized solution structures in the (2+1)-dimensional dispersive long-wave equations . Starting from the homogeneous ba...This article is concerned with the extended homogeneous balance method for studying the abundant localized solution structures in the (2+1)-dimensional dispersive long-wave equations . Starting from the homogeneous balance method, we find that the richness of the localized coherent structures of the model is caused by the entrance of two variable-separated arbitrary functions. For some special selections of the arbitrary functions, it is shown that the localized structures of the model may be dromions, lumps, breathers, instantons and ring solitons.展开更多
Long-wave infrared (IR) generation based on type-Ⅱ (o→e+o) phase matching ZnGeP2 (ZGP) and CdSe optical parametric oscillators (OPOs) pumped by a 2.05μm Tm,Ho:GdVO4 laser is reported. The comparisons of t...Long-wave infrared (IR) generation based on type-Ⅱ (o→e+o) phase matching ZnGeP2 (ZGP) and CdSe optical parametric oscillators (OPOs) pumped by a 2.05μm Tm,Ho:GdVO4 laser is reported. The comparisons of the birefringent walk-off effect and the oscillation threshold between ZGP and CdSe OPOs are performed theoretically and experimentally. For the ZGP OPO, up to 419 mW output at 8.04 μm is obtained at the 8 kHz pump pulse repetition frequency (PRF) with a slope efficiency of 7.6%. This ZGP OPO can be continuously tuned from 7.8 to 8.5 μm. For the CdSe OPO, we demonstrate a 64 mW output at 8.9μm with a single crystal 28 mm in length.展开更多
A ten-month field research study was meticulously conducted at Robert Moses State Park (RMSP) on the south shore of Long Island, NY. The objective was to determine if aerial phenomena of an unknown nature exist over a...A ten-month field research study was meticulously conducted at Robert Moses State Park (RMSP) on the south shore of Long Island, NY. The objective was to determine if aerial phenomena of an unknown nature exist over a coastal location and to characterize their properties and behaviors. Primary and secondary field observation methods were utilized in this data-centric study. Forensic engineering principles and methodologies guided the study. The challenges set forward were object detection, observation, and characterization, where multispectral electro-optical devices and radar were employed due to limited visual acuity and intermittent presentation of the phenomena. The primary means of detection utilized a 3 cm X-band radar operating in two scan geometries, the X- and Y-axis. Multispectral electro-optical devices were utilized as a secondary means of detection and identification. Data was emphasized using HF and LF detectors and spectrum analyzers incorporating EM, ultrasonic, magnetic, and RF field transducers to record spectral data in these domains. Data collection concentrated on characterizing VIS, NIR, SWIR, LWIR, UVA, UVB, UVC, and the higher energy spectral range of ionizing radiation (alpha, beta, gamma, and X-ray) recorded by Geiger-Müller counters as well as special purpose semiconductor diode sensors.展开更多
Since its invention,holography has been mostly applied at visible wavelengths in a variety of applications.Specifically,non-destructive testing of manufactured objects was a driver for developing holographic methods a...Since its invention,holography has been mostly applied at visible wavelengths in a variety of applications.Specifically,non-destructive testing of manufactured objects was a driver for developing holographic methods and all related ones based on the speckle pattern recording.One substantial limitation of holographic non-destructive testing is the setup stability requirements directly related to the laser wavelength.This observation has driven some works for 15 years:developing holography at wavelengths much longer than visible ones.In this paper,we will first review researches carried out in the infrared,mostly digital holography at thermal infrared wavelengths around 10 micrometers.We will discuss the advantages of using such wavelengths and show different examples of applications.In nondestructive testing,large wavelengths allow using digital holography in perturbed environments on large objects and measure large deformations,typical of the aerospace domain.Other astonishing applications such as reconstructing scenes through smoke and flames were proposed.When moving further in the spectrum,digital holography with so-called Terahertz waves(up to 3 millimeters wavelength)has also been studied.The main advantage here is that these waves easily penetrate some materials.Therefore,one can envisage Terahertz digital holography to reconstruct the amplitude and phase of visually opaque objects.We review some cases in which Terahertz digital holography has shown potential in biomedical and industrial applications.We will also address some fundamental bottlenecks that prevent fully benefiting from the advantages of digital holography when increasing the wavelength.展开更多
In this paper, we present a new rational algebraic approach to uniformly construct a series of exact analytical solutions for nonlinear partial differential equations. Compared with most existing tanh methods and othe...In this paper, we present a new rational algebraic approach to uniformly construct a series of exact analytical solutions for nonlinear partial differential equations. Compared with most existing tanh methods and other sophisticated methods, the proposed method not only recovers some known solutions, but also finds some new and general solutions. The solutions obtained in this paper include rational form triangular periodic wave solutions, solitary wave solutions, and elliptic doubly periodic wave solutions. The efficiency of the method can be demonstrated on (2+1)-dimensional dispersive long-wave equation.展开更多
By applying the extended homogeneous balance method, we find some new explicit solutions to two nonlinear evolution equations, which include n-resonance plane solitary wave and non-traveling wave solutions.
基金*Supported by the National Natural Science Foundation of China under Grant No. 40876010, the Main Direction Program of the Knowledge Innovation Project of Chinese Academy of Sciences under Grant No. KZCX2-YW-Q03-08, the R &: D Special Fund for Public Welfare Industry (Meteorology) under Grant No. GYHY200806010, the LASG State Key Laboratory Special Fund and the Foundation of E-Institutes of Shanghai Municipal Education Commission (E03004)
文摘The approximate expressions of the travelling wave solutions for a class of nonlinear disturbed long-wave system are constructed using the generalized variational iteration method.
文摘This article is concerned with the extended homogeneous balance method for studying the abundant localized solution structures in the (2+1)-dimensional dispersive long-wave equations . Starting from the homogeneous balance method, we find that the richness of the localized coherent structures of the model is caused by the entrance of two variable-separated arbitrary functions. For some special selections of the arbitrary functions, it is shown that the localized structures of the model may be dromions, lumps, breathers, instantons and ring solitons.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60878011 and 61078008)the Program for New Century Excellent Talents in University,China (Grant No. NCET-10-0067)
文摘Long-wave infrared (IR) generation based on type-Ⅱ (o→e+o) phase matching ZnGeP2 (ZGP) and CdSe optical parametric oscillators (OPOs) pumped by a 2.05μm Tm,Ho:GdVO4 laser is reported. The comparisons of the birefringent walk-off effect and the oscillation threshold between ZGP and CdSe OPOs are performed theoretically and experimentally. For the ZGP OPO, up to 419 mW output at 8.04 μm is obtained at the 8 kHz pump pulse repetition frequency (PRF) with a slope efficiency of 7.6%. This ZGP OPO can be continuously tuned from 7.8 to 8.5 μm. For the CdSe OPO, we demonstrate a 64 mW output at 8.9μm with a single crystal 28 mm in length.
文摘A ten-month field research study was meticulously conducted at Robert Moses State Park (RMSP) on the south shore of Long Island, NY. The objective was to determine if aerial phenomena of an unknown nature exist over a coastal location and to characterize their properties and behaviors. Primary and secondary field observation methods were utilized in this data-centric study. Forensic engineering principles and methodologies guided the study. The challenges set forward were object detection, observation, and characterization, where multispectral electro-optical devices and radar were employed due to limited visual acuity and intermittent presentation of the phenomena. The primary means of detection utilized a 3 cm X-band radar operating in two scan geometries, the X- and Y-axis. Multispectral electro-optical devices were utilized as a secondary means of detection and identification. Data was emphasized using HF and LF detectors and spectrum analyzers incorporating EM, ultrasonic, magnetic, and RF field transducers to record spectral data in these domains. Data collection concentrated on characterizing VIS, NIR, SWIR, LWIR, UVA, UVB, UVC, and the higher energy spectral range of ionizing radiation (alpha, beta, gamma, and X-ray) recorded by Geiger-Müller counters as well as special purpose semiconductor diode sensors.
基金M.G.and Y.Z.acknowledge European Regional Development Fund/Wallonia region project(TERA4ALL)MG.and JF.V.acknowledge the support of ESA(GSTP project Contract No.22540/09/NL/SFe)EU(FP7 European project FANTOM ACP7-GA-2008-213457).
文摘Since its invention,holography has been mostly applied at visible wavelengths in a variety of applications.Specifically,non-destructive testing of manufactured objects was a driver for developing holographic methods and all related ones based on the speckle pattern recording.One substantial limitation of holographic non-destructive testing is the setup stability requirements directly related to the laser wavelength.This observation has driven some works for 15 years:developing holography at wavelengths much longer than visible ones.In this paper,we will first review researches carried out in the infrared,mostly digital holography at thermal infrared wavelengths around 10 micrometers.We will discuss the advantages of using such wavelengths and show different examples of applications.In nondestructive testing,large wavelengths allow using digital holography in perturbed environments on large objects and measure large deformations,typical of the aerospace domain.Other astonishing applications such as reconstructing scenes through smoke and flames were proposed.When moving further in the spectrum,digital holography with so-called Terahertz waves(up to 3 millimeters wavelength)has also been studied.The main advantage here is that these waves easily penetrate some materials.Therefore,one can envisage Terahertz digital holography to reconstruct the amplitude and phase of visually opaque objects.We review some cases in which Terahertz digital holography has shown potential in biomedical and industrial applications.We will also address some fundamental bottlenecks that prevent fully benefiting from the advantages of digital holography when increasing the wavelength.
基金The project supported by National Natural Science Foundation of China, the Natural Science Foundation of Shandong Province of China, and the Natural Science Foundation of Liaocheng University .
文摘In this paper, we present a new rational algebraic approach to uniformly construct a series of exact analytical solutions for nonlinear partial differential equations. Compared with most existing tanh methods and other sophisticated methods, the proposed method not only recovers some known solutions, but also finds some new and general solutions. The solutions obtained in this paper include rational form triangular periodic wave solutions, solitary wave solutions, and elliptic doubly periodic wave solutions. The efficiency of the method can be demonstrated on (2+1)-dimensional dispersive long-wave equation.
文摘By applying the extended homogeneous balance method, we find some new explicit solutions to two nonlinear evolution equations, which include n-resonance plane solitary wave and non-traveling wave solutions.