The Lomagundi-Jatuli Event(LJE)refers to the significant positive carbon isotope excursion in seawater constituents that occurred immediately after the increase in atmospheric oxygen content during the Paleoproterozoi...The Lomagundi-Jatuli Event(LJE)refers to the significant positive carbon isotope excursion in seawater constituents that occurred immediately after the increase in atmospheric oxygen content during the Paleoproterozoic(2.22-2.06 Ga).Theδ^(13)C values of 46 dolostone samples collected from the Paleoproterozoic Yongjingshao Formation varied in the range of 0.05‰-4.95‰(V-PDB;maximum:4.95‰)in this study,which may be related to the multicellular eukaryotes in the Liangshan Formation in the Yimen Group.They are much higher than theδ^(13)C values of marine carbonates(-1.16‰on average).Theδ^(13)C values of other formations in the Paleoproterozoic Yimen Group are negative.The notable positive carbon isotope anomalies of the Yongjingshao Formation indicate the response to the LJE at the southwestern margin of the Yangtze Block,which is reported for the first time.Furthermore,they are comparable to theδ^(13)C values of carbonates in the Dashiling Formation of the Hutuo Group in the Wutaishan area in the North China Craton,the Wuzhiling Formation of the Songshan Group in the Xiong'er area,Henan Province,and the Dashiqiao Formation of the Liaohe Group in the Guanmenshan area,Liaoning Province.Therefore,it can be further concluded that the LJE is a global event.This study reveals that LJE occurred in Central Yunnan at 2.15-2.10 Ga,lasting for about 50 Ma.The macro-columnar,bean-shaped,and microfilament fossils and reticular ultramicrofossils of multicellular eukaryotes in this period were discovered in the Liangshan Formation of the Yimen Group.They are the direct cause for the LJE and are also the oldest paleontological fossils ever found.The major events successively occurring in the early stage of the Earth include the Great Oxygenation Event(first occurrence),the global Superiortype banded iron formations(BIFs),the Huronian glaciation,the Great Oxygenation Event(second occurrence),the explosion of multicellular eukaryotes,the positive carbon isotope excursion,and the global anoxic and selenium-rich sedimentary 展开更多
The Lomagundi-Jatuli Event(LJE) is one of the largest and earliest positive carbon isotope excursions preserving δ^(13)C_(carb) values between +5 and +16‰ in Paleoproterozoic carbonates worldwide. However, t...The Lomagundi-Jatuli Event(LJE) is one of the largest and earliest positive carbon isotope excursions preserving δ^(13)C_(carb) values between +5 and +16‰ in Paleoproterozoic carbonates worldwide. However, the duration, amplitude and patterns of these excursions remain poorly constrained. The 2.14-1.83 Ga Hutuo Group in the North China Craton is a 〉10 km thick volcano-sedimentary sequence, including 〉5 km thick well-preserved carbonates that were deposited in supra-tidal to sub-tidal environments. C-O isotopic and elemental analyses of 152 least altered samples of the carbonates revealed a three-stage δ^(13)C evolution. It began with an exclusively positive δ^(13)C_(carb)(+1.3 to + 3.4‰) stage in the ~2.1 Ga carbonate in the Dashiling and Qingshicun Formations, followed by a transition from positive values to oscillating positive and negative values in ~3 000 m thick carbonates of the Wenshan, Hebiancun, Jianancun, and Daguandong Formations, and end with exclusively negative δ^(13)C_(carb) values preserved in 〉 500 m thick dolostones of the Huaiyincun and Beidaxing Formations. It appears that much of the LJE, particularly those extremely positive δ^(13)C_(carb) signals, was not recorded in the Hutuo carbonates. The exclusively positive δ^(13)C_(carb) values(+1.3 to + 3.4‰) preserved in the lower formations likely correspond to the end of the LJE, whereas the subsequent two stages reflect the aftermath of the LJE and the onset of Shunga-Francevillian event(SFE). The present data point to an increased influence of oxygen on the carbon cycle from the Doucun to the Dongye Subgroups and demonstrate that the termination of the LJE in the North China Craton is nearly simultaneous with those in Fennoscandia and South Africa.展开更多
The Great Oxidation Event(GOE)during the early Paleoproterozoic represents the first significant buildup in Earth’s atmospheric oxygen and resulted in a series of significant changes in the Earth’s surface environme...The Great Oxidation Event(GOE)during the early Paleoproterozoic represents the first significant buildup in Earth’s atmospheric oxygen and resulted in a series of significant changes in the Earth’s surface environment.Among them is the 2.22(or 2.33)–2.06 Ga Lomagundi-Jatuli Event(LJE),which is globally,the largest magnitude and longest duration,marine carbonate positive carbon isotope excursion(δ^(13)C_(V-PDB)>10‰)known.This event has attracted the attention of scholars all over the world.However,except for a high positive carbon isotope excursion(δ^(13)C_(V-PDB)>10‰)recently identified from marine carbonate rocks within the Daposhan Formation in the lower Fanhe Group(or the Sanchazi Group)in the Longgang Block in the northeast North China Craton(NCC),Paleoproterozoic carbonates in the NCC are characterized by a low-amplitude positive carbon isotope excursion(δ^(13)C_(V-PDB)<5‰).This feature is significantly different from the high positive carbon isotope excursion characteristics of carbonates deposited during the LJE period in other cratons.To determine whether there are large-scale and reliable sedimentary records of the LJE in the NCC and the reasons for the low positive δ^(13)C excursion of the Paleoproterozoic carbonates obtained by the previous studies,we conducted field investigations,carbon-oxygen isotopes,and whole-rock major and trace element geochemical analyses of Liaohe Group carbonate rocks from the Anshan area in the northwestern margin of the Jiao-Liao-Ji Belt in the northeast NCC.Our results show that the Gaojiayu Formation of the Liaohe Group in the Anshan area has high positive δ^(13)C_(V-PDB) values from 8.6‰ to 12.4‰ and δ^(18)O_(V-SMOW) values of 17.9‰-27.4‰(δ^(18)O_(V-PDB) values ranging from−12.6‰to -3.4‰).This provides solid evidence for the preservation of reliable sedimentary records of the LJE in the northeastern NCC.Deposition of the high positive δ^(13)C excursion(>10‰)of marine carbonate rocks occurred at about 2.15 Ga.Lithological comparisons of展开更多
The Lomagundi(-Jatuli)event,characterized by extremely high positive global inorganic carbon isotope excursion at about 2.2 billion years ago,is pivotal in investigating the causes and consequences of great oxygenatio...The Lomagundi(-Jatuli)event,characterized by extremely high positive global inorganic carbon isotope excursion at about 2.2 billion years ago,is pivotal in investigating the causes and consequences of great oxygenation event,inventory and sequestration of carbon on the Earth’s surface,evolution of life,and more profoundly tectonic control on Earth’s environment.However,the reasons that caused the isotopic excursion are not resolved yet.Herein,we report the discovery of meta-carbonate rocks with distinct positive carbon isotopic excursion from the Paleoproterozoic continental collision zone of the Kongling Complex,South China Craton.The δ^(13)C_(V-PDB) values for meta-carbonate rocks show positive values in the range from+5.5‰to+11.6‰,whereas the δ^(13)C_(V-PDB) values of associated graphite deposits range from-25.8‰to-9.5‰.Zircon U-Pb-Hf isotopes from zircon-bearing meta-carbonate sample yielded weighted average _(207)Pb/_(206)Pb age of 2001.3±9.5 Ma,with correspondingε_(Hf)(t)range from-7.05 to-3.16,comparable to the values of local 2.9–2.6 Ga basement rocks.Geochemical characteristics of meta-carbonate rocks,such as their rare earth element patterns and the trace element parameters of La,Ce,Eu,and Gd anomalies and Y/Ho ratio,suggest that the carbonate deposition took place in passive continental margin in association with large volumes of organic carbon.The extensive graphite deposits from Kongling Complex in South China Craton,their equivalents in the North China Craton and elsewhere across the globe prove that the burial of ^(12)C-enriched organic carbon has eventually resulted in the global enrichment of ^(13)C in the atmospheric CO_(2),which is recorded in the marine carbonate rocks.Isotopic mass balance estimates indicate that more than half of the organic carbon was buried during the oceanic closure.Hence,the observed global shift could be directly related to the continent collision event in greater China,thus resolving the long-standing paradox of the Lomagundi global positive carbon is展开更多
基金financially supported by the project entitled 1∶50000 Regional Geological Survey of Samaki,Yinmin,Guicheng,and Shugu Sheets in Yunnan Province(D201905)organized by the Land and Resources Department of Yunnan ProvinceTraining Object Project of technological innovation talents in Yunnan Province(202205AD160073)+2 种基金the project entitled“1∶50000 Regional Geological Survey of Dazhuang,Fabiao,Ditu,and Dianzhong Sheets in Yunnan Province”(S53A00722001048-007)“Joint Foundation Project between Yunnan Science and Technology Department and Yunnan University”(CY21624103)the project entitled“Area Summary and Service Product Development of Regional Geological Surveys in Yunnan Province”initiated by the China Geological Survey(121201102000150012-02)。
文摘The Lomagundi-Jatuli Event(LJE)refers to the significant positive carbon isotope excursion in seawater constituents that occurred immediately after the increase in atmospheric oxygen content during the Paleoproterozoic(2.22-2.06 Ga).Theδ^(13)C values of 46 dolostone samples collected from the Paleoproterozoic Yongjingshao Formation varied in the range of 0.05‰-4.95‰(V-PDB;maximum:4.95‰)in this study,which may be related to the multicellular eukaryotes in the Liangshan Formation in the Yimen Group.They are much higher than theδ^(13)C values of marine carbonates(-1.16‰on average).Theδ^(13)C values of other formations in the Paleoproterozoic Yimen Group are negative.The notable positive carbon isotope anomalies of the Yongjingshao Formation indicate the response to the LJE at the southwestern margin of the Yangtze Block,which is reported for the first time.Furthermore,they are comparable to theδ^(13)C values of carbonates in the Dashiling Formation of the Hutuo Group in the Wutaishan area in the North China Craton,the Wuzhiling Formation of the Songshan Group in the Xiong'er area,Henan Province,and the Dashiqiao Formation of the Liaohe Group in the Guanmenshan area,Liaoning Province.Therefore,it can be further concluded that the LJE is a global event.This study reveals that LJE occurred in Central Yunnan at 2.15-2.10 Ga,lasting for about 50 Ma.The macro-columnar,bean-shaped,and microfilament fossils and reticular ultramicrofossils of multicellular eukaryotes in this period were discovered in the Liangshan Formation of the Yimen Group.They are the direct cause for the LJE and are also the oldest paleontological fossils ever found.The major events successively occurring in the early stage of the Earth include the Great Oxygenation Event(first occurrence),the global Superiortype banded iron formations(BIFs),the Huronian glaciation,the Great Oxygenation Event(second occurrence),the explosion of multicellular eukaryotes,the positive carbon isotope excursion,and the global anoxic and selenium-rich sedimentary
基金National Natural Science Foundation of China (No. 41272038)National Universities, China University of Geosciences (Wuhan), State Key Laboratory of Biogeology and Environmental Geology,China University of Geosciences (No. GKZ14Y660)+1 种基金the 111 Program for the Ministry of Education of Chinathe State Administration of Foreign Expert Affairs of China (No. B07039)
文摘The Lomagundi-Jatuli Event(LJE) is one of the largest and earliest positive carbon isotope excursions preserving δ^(13)C_(carb) values between +5 and +16‰ in Paleoproterozoic carbonates worldwide. However, the duration, amplitude and patterns of these excursions remain poorly constrained. The 2.14-1.83 Ga Hutuo Group in the North China Craton is a 〉10 km thick volcano-sedimentary sequence, including 〉5 km thick well-preserved carbonates that were deposited in supra-tidal to sub-tidal environments. C-O isotopic and elemental analyses of 152 least altered samples of the carbonates revealed a three-stage δ^(13)C evolution. It began with an exclusively positive δ^(13)C_(carb)(+1.3 to + 3.4‰) stage in the ~2.1 Ga carbonate in the Dashiling and Qingshicun Formations, followed by a transition from positive values to oscillating positive and negative values in ~3 000 m thick carbonates of the Wenshan, Hebiancun, Jianancun, and Daguandong Formations, and end with exclusively negative δ^(13)C_(carb) values preserved in 〉 500 m thick dolostones of the Huaiyincun and Beidaxing Formations. It appears that much of the LJE, particularly those extremely positive δ^(13)C_(carb) signals, was not recorded in the Hutuo carbonates. The exclusively positive δ^(13)C_(carb) values(+1.3 to + 3.4‰) preserved in the lower formations likely correspond to the end of the LJE, whereas the subsequent two stages reflect the aftermath of the LJE and the onset of Shunga-Francevillian event(SFE). The present data point to an increased influence of oxygen on the carbon cycle from the Doucun to the Dongye Subgroups and demonstrate that the termination of the LJE in the North China Craton is nearly simultaneous with those in Fennoscandia and South Africa.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.41920104004,U2244213,41725011)the Fundamental Research Fund of Chinese Academy of Geological Sciences(Grant No.JKYZD202320)。
文摘The Great Oxidation Event(GOE)during the early Paleoproterozoic represents the first significant buildup in Earth’s atmospheric oxygen and resulted in a series of significant changes in the Earth’s surface environment.Among them is the 2.22(or 2.33)–2.06 Ga Lomagundi-Jatuli Event(LJE),which is globally,the largest magnitude and longest duration,marine carbonate positive carbon isotope excursion(δ^(13)C_(V-PDB)>10‰)known.This event has attracted the attention of scholars all over the world.However,except for a high positive carbon isotope excursion(δ^(13)C_(V-PDB)>10‰)recently identified from marine carbonate rocks within the Daposhan Formation in the lower Fanhe Group(or the Sanchazi Group)in the Longgang Block in the northeast North China Craton(NCC),Paleoproterozoic carbonates in the NCC are characterized by a low-amplitude positive carbon isotope excursion(δ^(13)C_(V-PDB)<5‰).This feature is significantly different from the high positive carbon isotope excursion characteristics of carbonates deposited during the LJE period in other cratons.To determine whether there are large-scale and reliable sedimentary records of the LJE in the NCC and the reasons for the low positive δ^(13)C excursion of the Paleoproterozoic carbonates obtained by the previous studies,we conducted field investigations,carbon-oxygen isotopes,and whole-rock major and trace element geochemical analyses of Liaohe Group carbonate rocks from the Anshan area in the northwestern margin of the Jiao-Liao-Ji Belt in the northeast NCC.Our results show that the Gaojiayu Formation of the Liaohe Group in the Anshan area has high positive δ^(13)C_(V-PDB) values from 8.6‰ to 12.4‰ and δ^(18)O_(V-SMOW) values of 17.9‰-27.4‰(δ^(18)O_(V-PDB) values ranging from−12.6‰to -3.4‰).This provides solid evidence for the preservation of reliable sedimentary records of the LJE in the northeastern NCC.Deposition of the high positive δ^(13)C excursion(>10‰)of marine carbonate rocks occurred at about 2.15 Ga.Lithological comparisons of
基金financial support from National Natural Science Foundation of China(41802200)Natural Science Foundation of Hubei Province(2020CFB863)+5 种基金China Scholarship Council(201906415017)China University of Geosciences Wuhan(CUGQY1938)the partial support through JSPS KAKENHI Grant Numbers JP15H05831 and 20KK0081a PhD scholarship support from Niigata Universityfinancial support from National Natural Science Foundation of China(41520104003)China University of Geosciences Wuhan(CUGCJ1709)。
文摘The Lomagundi(-Jatuli)event,characterized by extremely high positive global inorganic carbon isotope excursion at about 2.2 billion years ago,is pivotal in investigating the causes and consequences of great oxygenation event,inventory and sequestration of carbon on the Earth’s surface,evolution of life,and more profoundly tectonic control on Earth’s environment.However,the reasons that caused the isotopic excursion are not resolved yet.Herein,we report the discovery of meta-carbonate rocks with distinct positive carbon isotopic excursion from the Paleoproterozoic continental collision zone of the Kongling Complex,South China Craton.The δ^(13)C_(V-PDB) values for meta-carbonate rocks show positive values in the range from+5.5‰to+11.6‰,whereas the δ^(13)C_(V-PDB) values of associated graphite deposits range from-25.8‰to-9.5‰.Zircon U-Pb-Hf isotopes from zircon-bearing meta-carbonate sample yielded weighted average _(207)Pb/_(206)Pb age of 2001.3±9.5 Ma,with correspondingε_(Hf)(t)range from-7.05 to-3.16,comparable to the values of local 2.9–2.6 Ga basement rocks.Geochemical characteristics of meta-carbonate rocks,such as their rare earth element patterns and the trace element parameters of La,Ce,Eu,and Gd anomalies and Y/Ho ratio,suggest that the carbonate deposition took place in passive continental margin in association with large volumes of organic carbon.The extensive graphite deposits from Kongling Complex in South China Craton,their equivalents in the North China Craton and elsewhere across the globe prove that the burial of ^(12)C-enriched organic carbon has eventually resulted in the global enrichment of ^(13)C in the atmospheric CO_(2),which is recorded in the marine carbonate rocks.Isotopic mass balance estimates indicate that more than half of the organic carbon was buried during the oceanic closure.Hence,the observed global shift could be directly related to the continent collision event in greater China,thus resolving the long-standing paradox of the Lomagundi global positive carbon is