The adjacent-categories, continuation-ratio and proportional odds logit-link regression models provide useful extensions of the multinomial logistic model to ordinal response data. We propose fitting these models with...The adjacent-categories, continuation-ratio and proportional odds logit-link regression models provide useful extensions of the multinomial logistic model to ordinal response data. We propose fitting these models with a logarithmic link to allow estimation of different forms of the risk ratio. Each of the resulting ordinal response log-link models is a constrained version of the log multinomial model, the log-link counterpart of the multinomial logistic model. These models can be estimated using software that allows the user to specify the log likelihood as the objective function to be maximized and to impose constraints on the parameter estimates. In example data with a dichotomous covariate, the unconstrained models produced valid coefficient estimates and standard errors, and the constrained models produced plausible results. Models with a single continuous covariate performed well in data simulations, with low bias and mean squared error on average and appropriate confidence interval coverage in admissible solutions. In an application to real data, practical aspects of the fitting of the models are investigated. We conclude that it is feasible to obtain adjusted estimates of the risk ratio for ordinal outcome data.展开更多
In this paper, the unknown link function, the direction parameter, and the heteroscedastic variance in single index models are estimated by the random weight method under the random censorship, respectively. The centr...In this paper, the unknown link function, the direction parameter, and the heteroscedastic variance in single index models are estimated by the random weight method under the random censorship, respectively. The central limit theory and the convergence rate of the law of the iterated logarithm for the estimator of the direction parameter are derived, respectively. The optimal convergence rates for the estimators of the link function and the heteroscedastic variance are obtained. Simulation results support the theoretical results of the paper.展开更多
文摘The adjacent-categories, continuation-ratio and proportional odds logit-link regression models provide useful extensions of the multinomial logistic model to ordinal response data. We propose fitting these models with a logarithmic link to allow estimation of different forms of the risk ratio. Each of the resulting ordinal response log-link models is a constrained version of the log multinomial model, the log-link counterpart of the multinomial logistic model. These models can be estimated using software that allows the user to specify the log likelihood as the objective function to be maximized and to impose constraints on the parameter estimates. In example data with a dichotomous covariate, the unconstrained models produced valid coefficient estimates and standard errors, and the constrained models produced plausible results. Models with a single continuous covariate performed well in data simulations, with low bias and mean squared error on average and appropriate confidence interval coverage in admissible solutions. In an application to real data, practical aspects of the fitting of the models are investigated. We conclude that it is feasible to obtain adjusted estimates of the risk ratio for ordinal outcome data.
基金supported by National Natural Science Foundation of China (Grant Nos. 10731010, 10971012 and 11071015)
文摘In this paper, the unknown link function, the direction parameter, and the heteroscedastic variance in single index models are estimated by the random weight method under the random censorship, respectively. The central limit theory and the convergence rate of the law of the iterated logarithm for the estimator of the direction parameter are derived, respectively. The optimal convergence rates for the estimators of the link function and the heteroscedastic variance are obtained. Simulation results support the theoretical results of the paper.