The power quality (PQ) signals are traditionally analyzed in the time-domain by skilled engineers. However, PQ disturbances may not always be obvious in the original time-domain signal. Fourier analysis transforms sig...The power quality (PQ) signals are traditionally analyzed in the time-domain by skilled engineers. However, PQ disturbances may not always be obvious in the original time-domain signal. Fourier analysis transforms signals into frequency domain, but has the disadvantage that time characteristics will become unobvious. Wavelet analysis, which provides both time and frequency information, can overcome this limitation. In this paper, there were two stages in analyzing PQ signals: feature extraction and disturbances classification. To extract features from PQ signals, wavelet packet transform (WPT) was first applied and feature vectors were constructed from wavelet packet log-energy entropy of different nodes. Least square support vector machines (LS-SVM) was applied to these feature vectors to classify PQ disturbances. Simulation results show that the proposed method possesses high recognition rate, so it is suitable to the monitoring and classifying system for PQ disturbances.展开更多
为了解决低信噪比环境下传统的语音端点检测算法性能较差且不能自适应环境噪声,提出了一种基于时频参数融合的自适应语音端点检测算法。将对数能量与改进的Mel能量进行融合,获得了一种新的时频参数(TF),该参数能有效地区分语音段和噪声...为了解决低信噪比环境下传统的语音端点检测算法性能较差且不能自适应环境噪声,提出了一种基于时频参数融合的自适应语音端点检测算法。将对数能量与改进的Mel能量进行融合,获得了一种新的时频参数(TF),该参数能有效地区分语音段和噪声段。使用该参数在噪声段对阈值进行更新,采用门限检测法判定出语音端点。仿真实验表明,该算法具有较好的鲁棒性,且能够准确地检测出语音端点。当信噪比(SNR)为0 d B时,端点检测错误率仅为15%左右。展开更多
文摘The power quality (PQ) signals are traditionally analyzed in the time-domain by skilled engineers. However, PQ disturbances may not always be obvious in the original time-domain signal. Fourier analysis transforms signals into frequency domain, but has the disadvantage that time characteristics will become unobvious. Wavelet analysis, which provides both time and frequency information, can overcome this limitation. In this paper, there were two stages in analyzing PQ signals: feature extraction and disturbances classification. To extract features from PQ signals, wavelet packet transform (WPT) was first applied and feature vectors were constructed from wavelet packet log-energy entropy of different nodes. Least square support vector machines (LS-SVM) was applied to these feature vectors to classify PQ disturbances. Simulation results show that the proposed method possesses high recognition rate, so it is suitable to the monitoring and classifying system for PQ disturbances.
文摘为了解决低信噪比环境下传统的语音端点检测算法性能较差且不能自适应环境噪声,提出了一种基于时频参数融合的自适应语音端点检测算法。将对数能量与改进的Mel能量进行融合,获得了一种新的时频参数(TF),该参数能有效地区分语音段和噪声段。使用该参数在噪声段对阈值进行更新,采用门限检测法判定出语音端点。仿真实验表明,该算法具有较好的鲁棒性,且能够准确地检测出语音端点。当信噪比(SNR)为0 d B时,端点检测错误率仅为15%左右。