期刊文献+
共找到103篇文章
< 1 2 6 >
每页显示 20 50 100
数据降维方法分析与研究 被引量:73
1
作者 吴晓婷 闫德勤 《计算机应用研究》 CSCD 北大核心 2009年第8期2832-2835,共4页
全面总结现有的数据降维方法,对具有代表性的降维方法进行了系统分类,详细地阐述了典型的降维方法,并从算法的时间复杂度和优缺点两方面对这些算法进行了深入的分析和比较。最后提出了数据降维中仍待解决的问题。
关键词 数据降维 主成分分析 局部线性嵌入 等度规映射 计算复杂度
下载PDF
基于局部线性嵌入(LLE)非线性降维的多流形学习 被引量:48
2
作者 马瑞 王家廞 宋亦旭 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第4期582-585,共4页
为了研究多人脸多表情数据集的多流形学习问题,提出了一种基于局部线性嵌入(LLE)算法的多流形学习方法。对于分布在不同流形上的高维数据,该方法在降维的同时首先对数据集进行非监督的聚类,然后分析每一类数据的低维流形的本质维数以... 为了研究多人脸多表情数据集的多流形学习问题,提出了一种基于局部线性嵌入(LLE)算法的多流形学习方法。对于分布在不同流形上的高维数据,该方法在降维的同时首先对数据集进行非监督的聚类,然后分析每一类数据的低维流形的本质维数以及流形空间的构成,聚类及流形空间的确定是通过对LLE降维的结果进行分析而完成的,计算复杂度小。在Cohn-Kanade人脸表情数据库上的表情识别实验表明,该方法在多人脸多表情流形的学习中优于基本的LLE算法,表情的识别率提高了20%~40%。 展开更多
关键词 人脸表情识别 局部线性嵌入(LEE) 流形
原文传递
流形学习中非线性维数约简方法概述 被引量:24
3
作者 黄启宏 刘钊 《计算机应用研究》 CSCD 北大核心 2007年第11期19-25,共7页
较为详细地回顾了流形学习中非线性维数约简方法,分析了它们各自的优势和不足。与传统的线性维数约简方法相比较,可以发现非线性高维数据的本质维数,有利于进行维数约简和数据分析。最后展望了流形学习中非线性维数方法的未来研究方向,... 较为详细地回顾了流形学习中非线性维数约简方法,分析了它们各自的优势和不足。与传统的线性维数约简方法相比较,可以发现非线性高维数据的本质维数,有利于进行维数约简和数据分析。最后展望了流形学习中非线性维数方法的未来研究方向,期望进一步拓展流形学习的应用领域。 展开更多
关键词 维数约简 流形学习 多维尺度 等距映射 拉普拉斯特征映射 局部线性嵌入 局部切空间排列
下载PDF
一种基于稀疏嵌入分析的降维方法 被引量:21
4
作者 闫德勤 刘胜蓝 李燕燕 《自动化学报》 EI CSCD 北大核心 2011年第11期1306-1312,共7页
近几年局部流形学习算法研究得到了广泛的关注,如局部线性嵌入以及局部切空间排列算法等.这些算法都是基于局部可线性化的假设而提出的,但局部是否可线性化的问题没有得到很好有效的解决,使得目前的降维算法对自然数据效果不佳.自然数... 近几年局部流形学习算法研究得到了广泛的关注,如局部线性嵌入以及局部切空间排列算法等.这些算法都是基于局部可线性化的假设而提出的,但局部是否可线性化的问题没有得到很好有效的解决,使得目前的降维算法对自然数据效果不佳.自然数据中有很多是稀疏的,对稀疏数据的降维是局部线性嵌入算法所面临的一个问题.基于对数据自然属性的考虑,利用数据的统计信息动态确定局部线性化范围,依据数据的分布提出一种排列的稀疏局部线性嵌入算法(Sparse local linear embedding algorithm,SLLEA).在数据集稀疏的情况下,该算法能够很好地把握数据的局部和整体信息.将该算法应用于手工流形及图像检索等试验中,验证了该算法的有效性. 展开更多
关键词 线性化 局部线性嵌入 稀疏 降维
下载PDF
基于加权局部线性嵌入的植物叶片图像识别方法 被引量:20
5
作者 张善文 王献峰 《农业工程学报》 EI CAS CSCD 北大核心 2011年第12期141-145,共5页
局部线性嵌入(LLE)是一种经典的流形学习算法,它通过保持近邻样本点之间的最小重构权值不变,将原始样本点投影到低维空间。但由于LLE对噪声比较敏感,为了提高LLE的鲁棒性,提出了一种加权LLE(WLLE)算法。首先,利用热核函数计算每个样本... 局部线性嵌入(LLE)是一种经典的流形学习算法,它通过保持近邻样本点之间的最小重构权值不变,将原始样本点投影到低维空间。但由于LLE对噪声比较敏感,为了提高LLE的鲁棒性,提出了一种加权LLE(WLLE)算法。首先,利用热核函数计算每个样本点的重要性值;然后将每个样本点的重要性值加入到LLE算法的代价函数中,使得噪声点和样本外点得到了很好抑制。最后由真实的植物叶片图像数据库上的实验结果证实了WLLE算法的有效性和可行性。 展开更多
关键词 图像识别 流形学习 局部线性嵌入 加权局部线性嵌入 植物叶片
下载PDF
一种新的彩色图像降维方法 被引量:10
6
作者 徐志节 杨杰 王猛 《上海交通大学学报》 EI CAS CSCD 北大核心 2004年第12期2063-2067,2072,共6页
基于内容的图像检索(CBIR)是图像检索的重要分支,而基于颜色的特征提取是CBIR的常用方法之一.如果对图像颜色的特征数提取过多、维数过大,则不利于对图像的快速匹配.本文将图像的色彩直方图作为输入向量,然后采用局部线性映射(LLE)算法... 基于内容的图像检索(CBIR)是图像检索的重要分支,而基于颜色的特征提取是CBIR的常用方法之一.如果对图像颜色的特征数提取过多、维数过大,则不利于对图像的快速匹配.本文将图像的色彩直方图作为输入向量,然后采用局部线性映射(LLE)算法对原始数据进行降维,并分别在4种色彩空间下对降维后的彩色图像进行分类.实验证明,在处理非线性数据降维时,LLE较主成分分析(PCA)具有明显的优势. 展开更多
关键词 图像检索 色彩直方图 特征提取 局部线性映射 非线性降维
下载PDF
动态增殖流形学习算法 被引量:13
7
作者 曾宪华 罗四维 《计算机研究与发展》 EI CSCD 北大核心 2007年第9期1462-1468,共7页
流形学习的主要目标是发现高维观测数据空间中的低维光滑流形.目前,流形学习已经成为机器学习和数据挖掘领域的研究热点.为了从高维数据流和大规模海量数据集中探索有价值的信息,迫切需要增殖地发现内在低维流形结构.但是,现有流形学习... 流形学习的主要目标是发现高维观测数据空间中的低维光滑流形.目前,流形学习已经成为机器学习和数据挖掘领域的研究热点.为了从高维数据流和大规模海量数据集中探索有价值的信息,迫切需要增殖地发现内在低维流形结构.但是,现有流形学习算法不具有增殖能力,并且不能有效处理海量数据集.针对这些问题,系统定义了增殖流形学习的概念,这有利于解释人脑中稳态感知流形的动态形成过程,且可以指导符合人脑增殖学习机理的流形学习算法的研究.以此为指导原则,提出了动态增殖流形学习算法,并在实验中验证了算法的有效性. 展开更多
关键词 流形学习 感知流形 低维流形 局部线性嵌入 增殖流形学习 可视化
下载PDF
基于LBP-TOP特征的微表情识别 被引量:15
8
作者 卢官明 杨成 +2 位作者 杨文娟 闫静杰 李海波 《南京邮电大学学报(自然科学版)》 北大核心 2017年第6期1-7,共7页
微表情是一个人试图隐藏内心真实情感却又不由自主流露出的不易被察觉的面部表情。与一般面部表情相比,微表情最显著的特点是持续时间短、强度弱,往往难以有效识别。文中提出了一种基于LBP-TOP(Local Binary Pattern from Three Orthogo... 微表情是一个人试图隐藏内心真实情感却又不由自主流露出的不易被察觉的面部表情。与一般面部表情相比,微表情最显著的特点是持续时间短、强度弱,往往难以有效识别。文中提出了一种基于LBP-TOP(Local Binary Pattern from Three Orthogonal Planes)特征和支持向量机(Support Vector Machine,SVM)分类器的微表情识别方法。首先,采用LBP-TOP算子来提取微表情特征;然后,提出一种基于ReliefF与局部线性嵌入(Locally Linear Embedding,LLE)流形学习算法相结合的特征选择算法,对提取的LBP-TOP特征向量进行降维;最后,使用径向基函数(Radial Basis Function,RBF)核的SVM分类器进行分类,将测试样本图像序列的微表情分为5类:高兴、厌恶、压抑、惊讶、其他。在CASME Ⅱ微表情数据库上采用"留一人交叉验证"(Leave-One-Subject-Out Cross Validation,LOSO-CV)的方式进行了实验,可得到58.98%的分类准确率。实验结果表明了该算法的有效性。 展开更多
关键词 微表情 LBP-TOP 局部线性嵌入 RELIEFF 支持向量机
下载PDF
一种新颖的人脸图像超分辨率技术 被引量:14
9
作者 吴炜 杨晓敏 +2 位作者 陈默 何小海 郑丽贤 《光学精密工程》 EI CAS CSCD 北大核心 2008年第5期815-821,共7页
研究了基于学习的人脸图像超分辨率技术。针对Baker方法建立的图像金字塔提取高频细节不够丰富的缺点,提出基于多分辨率幻觉脸算法,采用Kirsch算子提取了高频特征。该算子与Baker的一阶、二阶灰度算子结合,能够提取更多的图像信息,使得... 研究了基于学习的人脸图像超分辨率技术。针对Baker方法建立的图像金字塔提取高频细节不够丰富的缺点,提出基于多分辨率幻觉脸算法,采用Kirsch算子提取了高频特征。该算子与Baker的一阶、二阶灰度算子结合,能够提取更多的图像信息,使得匹配更为准确。将流形学习中的LLE算法思想引入匹配复原过程,复原结果获取了更完备的高频信息。对IMDB人脸库进行了试验比较,结果表明,本文方法可取得30.92 dB的平均峰值信噪比,高于Baker方法和插值算法;而且本文预测得到的先验模型更为准确,使得最终复原的人脸图像具有更好的视觉效果。 展开更多
关键词 基于学习的超分辨率 幻觉脸 KIRSCH算子 流形学习 局部线性嵌入
下载PDF
基于LLE和SVM的人像识别方法 被引量:13
10
作者 郭锋 刘丽丽 吕凝 《吉林大学学报(信息科学版)》 CAS 2008年第1期48-54,共7页
在人像识别方面,传统的特征提取方法大都是线性的,不能很好地保持样本的拓扑结构。支持向量机能提高学习的泛化能力,防止过学习,是一种很好的分类器。为此,提出一种增强的LLE(Locally Linear Em- bedding)和SVM(support Vector Machine... 在人像识别方面,传统的特征提取方法大都是线性的,不能很好地保持样本的拓扑结构。支持向量机能提高学习的泛化能力,防止过学习,是一种很好的分类器。为此,提出一种增强的LLE(Locally Linear Em- bedding)和SVM(support Vector Machine)结合的人像识别方法,采用PCA(Principal Component Analysis)与LLE相结合算法,对光照归一化处理过的人脸图像进行特征提取,利用SVM的分类机制对人脸图像样本集进行训练和识别。在ORL(Olivetti Research Laboratory)人脸数据库上实验表明,该算法稳健、快速,识别率达到了90%以上。 展开更多
关键词 人脸识别 局部线性嵌入 主成分分析法 支持向量机
下载PDF
基于表情加权距离SLLE的人脸表情识别 被引量:11
11
作者 应自炉 李景文 张有为 《模式识别与人工智能》 EI CSCD 北大核心 2010年第2期278-283,共6页
局部线性嵌入(LLE)算法没有考虑训练样本的类别信息,而有监督LLE(SLLE)算法等同处理类别之间的差异性.根据人脸表情的特点,各个表情类别之间的差异性是有区别的,据此,文中构造一种基于表情加权距离的SLLE算法.在计算训练样本之间距离时... 局部线性嵌入(LLE)算法没有考虑训练样本的类别信息,而有监督LLE(SLLE)算法等同处理类别之间的差异性.根据人脸表情的特点,各个表情类别之间的差异性是有区别的,据此,文中构造一种基于表情加权距离的SLLE算法.在计算训练样本之间距离时,对来自不同表情类别的样本距离选择不同的加权值,从而使表情类别的先验信息得到更充分利用.在JAFFE库上进行人脸表情识别实验结果表明,相比LLE算法和SLLE算法,该算法在一定邻域范围内获得更好的人脸表情识别率,是一种有效算法. 展开更多
关键词 局部线性嵌入(lle) 有监督局部线性嵌入(Slle) 人脸表情识别 表情加权距离
原文传递
应用相关近邻局部线性嵌入算法的高光谱遥感影像分类 被引量:13
12
作者 刘嘉敏 罗甫林 +1 位作者 黄鸿 刘亦哲 《光学精密工程》 EI CAS CSCD 北大核心 2014年第6期1668-1676,共9页
传统的局部线性嵌入(LLE)算法需用欧氏距离度量近邻,但欧氏距离只表示两点间的直线距离,在高维空间中不一定能反映数据间的真实空间分布,导致近邻选取不稳定.针对此问题,本文提出了相关近邻(CN)LIE(CN-LLE)和相关最近邻分类(CNN... 传统的局部线性嵌入(LLE)算法需用欧氏距离度量近邻,但欧氏距离只表示两点间的直线距离,在高维空间中不一定能反映数据间的真实空间分布,导致近邻选取不稳定.针对此问题,本文提出了相关近邻(CN)LIE(CN-LLE)和相关最近邻分类(CNN)算法.提出的算法首先利用相关系数度量数据间的近邻,实现更准确的局部重构,提取鉴别特征;然后用CNN对低维嵌入特征进行分类.在KSC和Indian Pine高光谱遥感数据集上的地物分类实验结果表明:本文提出的CN-LLE+ CNN算法比LLE、LLE+CNN和CN-LLE等算法的总分类精度提升了2.11%~11.55%,Kappa系数提升了0.026~0.143.由于该算法增加了近邻为同类的概率,便于更有效地提取同类数据的鉴别特征,且有更好的稳定性,故能更有效地实现高光谱遥感数据的地物分类. 展开更多
关键词 高光谱影像分类 流形学习 局部线性嵌入 相关近邻 相关最近邻分类器
下载PDF
基于正交迭代的增量LLE算法 被引量:11
13
作者 朱明旱 罗大庸 +1 位作者 易励群 王一军 《电子学报》 EI CAS CSCD 北大核心 2009年第1期132-136,共5页
LLE(Locally Linear Embedding)算法是一种较好的流形学习算法,但它只能以批处理的方式进行.只要有新的样本加入,就必须重作该算法的全部内容,而原处理结果被全部丢弃.本文提出了一种基于正交迭代的增量LLE算法,能有效地利用前面的处理... LLE(Locally Linear Embedding)算法是一种较好的流形学习算法,但它只能以批处理的方式进行.只要有新的样本加入,就必须重作该算法的全部内容,而原处理结果被全部丢弃.本文提出了一种基于正交迭代的增量LLE算法,能有效地利用前面的处理结果,实现增量处理.实验表明该算法是有效的. 展开更多
关键词 局部线性嵌入 流形学习 正交迭代 增量
下载PDF
基于局部线性嵌入的人工智能台风强度集合预报模型 被引量:11
14
作者 黄颖 金龙 +2 位作者 黄小燕 史旭明 金健 《气象》 CSCD 北大核心 2014年第7期806-815,共10页
利用局部线性嵌入算法通过学习挖掘高维数据集的内在几何结构,高效地实现维数约简和特征提取的能力,论文以2001—2012年共12年6—9月西北太平洋海域内生成的台风样本为基础,将气候持续因子作为台风强度的基本预报因子,采用局部线性嵌入... 利用局部线性嵌入算法通过学习挖掘高维数据集的内在几何结构,高效地实现维数约简和特征提取的能力,论文以2001—2012年共12年6—9月西北太平洋海域内生成的台风样本为基础,将气候持续因子作为台风强度的基本预报因子,采用局部线性嵌入的特征提取与逐步回归计算相结合的预报因子信息数据挖掘技术,以进化计算的粒子群算法,生成期望输出相同的多个神经网络个体,建立了一种新的非线性人工智能集合预报模型,进行了分月台风强度预报模型的建模研究。在建模样本、独立预报样本相同的情况下,分别采用人工智能集合预报方法和气候持续法进行预报试验。试验对比结果表明,前者较后者在6、7、8和9月24 h台风强度预报中,平均绝对误差分别下降了23.34%、24.46%、19.41%和27.45%,4个月的平均绝对误差下降了23.10%;48 h台风强度预报中,6—9月平均绝对误差分别下降了44.82%、16.73%、0.89%和49.26%,4个月的平均绝对误差下降了25.54%。进一步研究发现,在变动局部线性嵌入算法忌近邻个数的情况下,建立的台风强度集合预报模型,其预报结果稳定可靠,相对于气候持续法均为正的预报技巧水平,为台风强度客观预报提供了新的预报工具和预报建模方法。 展开更多
关键词 局部线性嵌入 粒子群-神经网络 集合预报 气候持续法 台风强度
下载PDF
基于无监督学习卷积神经网络的振动信号模态参数识别 被引量:11
15
作者 方宁 周宇 +1 位作者 叶庆卫 李玉刚 《计算机应用》 CSCD 北大核心 2017年第3期786-790,822,共6页
针对现有的时域模态参数识别方法大多存在难定阶和抗噪性差的问题,提出一种无监督学习的卷积神经网络(CNN)的振动信号模态识别方法。该算法在卷积神经网络的基础上进行改进。首先,将应用于二维图像处理的卷积神经网络改成处理一维信号... 针对现有的时域模态参数识别方法大多存在难定阶和抗噪性差的问题,提出一种无监督学习的卷积神经网络(CNN)的振动信号模态识别方法。该算法在卷积神经网络的基础上进行改进。首先,将应用于二维图像处理的卷积神经网络改成处理一维信号的卷积神经网络,其中输入层改成待提取模态参数的振动信号集合,中间层改成若干一维卷积层、抽样层,输出层得到的为信号对应的N阶模态参数集合;然后,在误差评估中,对网络计算结果(N阶模态参数集)进行振动信号重构;最后,将重构信号和输入信号之间差的平方和作为网络学习误差,使得网络变成无监督学习网络,避免模态参数提取算法的定阶难题。实验结果表明,当所构建的卷积神经网络应用于模态参数提取时,与随机子空间识别(SSI)算法及其局部线性嵌入(LLE)算法对比,在噪声干扰下,构建的卷积神经网络识别精度要高于SSI算法与LLE算法,具有抗噪声强、避免了定阶难题的优点。 展开更多
关键词 卷积神经网络 模态参数 无监督学习 学习误差 随机子空间识别 局部线性嵌入
下载PDF
一种快速的超分辨率图像重构算法 被引量:10
16
作者 刘哲 张永亮 +1 位作者 郝珉慧 张鹤妮 《光电子.激光》 EI CAS CSCD 北大核心 2013年第2期372-377,共6页
基于稀疏表示的超分辨率(SR)图像重构算法需要求解l1范数优化问题,时间效率不高。本文在该方法的基础上加入平移不变性约束条件,并且考虑到稀疏参数对重构结果影响不大,对重构算法进行简化,避免了求解复杂的l1范数优化问题,实现了一种... 基于稀疏表示的超分辨率(SR)图像重构算法需要求解l1范数优化问题,时间效率不高。本文在该方法的基础上加入平移不变性约束条件,并且考虑到稀疏参数对重构结果影响不大,对重构算法进行简化,避免了求解复杂的l1范数优化问题,实现了一种快速的图像SR重构。数值实验结果表明,本文算法具有更高的时间效率。 展开更多
关键词 局部线性嵌入(lle) l1范数优化 稀疏度 邻近数目 平移不变性
原文传递
基于自适应近邻参数的局部线性嵌入 被引量:9
17
作者 惠康华 肖柏华 王春恒 《模式识别与人工智能》 EI CSCD 北大核心 2010年第6期842-846,共5页
局部线性嵌入算法是一种有效的非线性降维方法.文中提出一种自适应的局部线性嵌入方法.该方法通过分析数据集中任意样本所在局部区域的线性重构误差,确定该局部区域的近似线性块,然后根据位于此局部线性块上的样本来选择局部线性嵌入的... 局部线性嵌入算法是一种有效的非线性降维方法.文中提出一种自适应的局部线性嵌入方法.该方法通过分析数据集中任意样本所在局部区域的线性重构误差,确定该局部区域的近似线性块,然后根据位于此局部线性块上的样本来选择局部线性嵌入的近邻参数.实验结果表明,在不同的数据集上,采用多个评价标准,自适应的局部线性嵌入方法相比普通的局部线性嵌入方法,取得更好的结果. 展开更多
关键词 降维 局部线性嵌入(lle) 流形学习 自适应
原文传递
基于局部线性嵌入和Haar小波的人脸识别方法 被引量:9
18
作者 李伟生 张勤 《计算机工程与应用》 CSCD 北大核心 2011年第4期181-184,187,共5页
为了抑制局部线性嵌入算法对噪音的敏感性,结合Haar小波变换,提出了一种人脸识别的新方法。利用Haar小波变换将原始图像数据分解为高频分量和低频分量,忽略水平高频与垂直高频分量,并将低频分量按行堆叠的方式引入其原始图像数据中。通... 为了抑制局部线性嵌入算法对噪音的敏感性,结合Haar小波变换,提出了一种人脸识别的新方法。利用Haar小波变换将原始图像数据分解为高频分量和低频分量,忽略水平高频与垂直高频分量,并将低频分量按行堆叠的方式引入其原始图像数据中。通过LLE对该图像数据进行降维,求得训练和测试样本各自对应的矩阵。依据最近邻准则完成人脸识别。基于ORL与Sheffield人脸数据库的实验结果表明了该方法对改善传统LLE算法识别率的有效性。 展开更多
关键词 人脸识别 流形 局部线性嵌入 HAAR小波变换 最近邻分类
下载PDF
局部线性嵌入算法改进研究 被引量:5
19
作者 郑守志 叶世伟 《计算机仿真》 CSCD 2007年第4期78-81,共4页
局部线性嵌入算法(Locally Linear Embedding LLE)是一种功能强大的数据降维方法,但它在处理稀疏数据源时的失效问题限制了其广泛应用,且至今没有一个完善的解决方案。为解决这一问题,从算法原理和执行过程两方面分析算法失效原因,把算... 局部线性嵌入算法(Locally Linear Embedding LLE)是一种功能强大的数据降维方法,但它在处理稀疏数据源时的失效问题限制了其广泛应用,且至今没有一个完善的解决方案。为解决这一问题,从算法原理和执行过程两方面分析算法失效原因,把算法的两个优化过程联合优化,对算法进行改进。通过对S曲线稀疏采样模拟稀疏数据源,把改进前后的算法对样本点实验结果进行对比,验证了算法改进的有效性;同时,用改进后的算法处理人脸数据,展示了改进后算法的实用价值。改进后的算法将进一步促进局部线性嵌入在工程和研究领域的应用,极大地改善了算法的性能。 展开更多
关键词 局部线性嵌入 表示坐标 嵌入坐标 流形学习
下载PDF
基于降维和聚类的大规模多目标自然计算方法 被引量:4
20
作者 季伟东 岳玉麒 +1 位作者 王旭 林平 《系统仿真学报》 CAS CSCD 北大核心 2023年第1期41-56,共16页
在多目标优化问题中,随着决策变量数目增多,算法的寻优能力会显著下降,针对这种“维数灾难”的问题,提出基于LLE降维思想和K-means聚类策略的大规模多目标自然计算方法。首先通过LLE降维思想对决策变量进行优化,得到高维变量在低维空间... 在多目标优化问题中,随着决策变量数目增多,算法的寻优能力会显著下降,针对这种“维数灾难”的问题,提出基于LLE降维思想和K-means聚类策略的大规模多目标自然计算方法。首先通过LLE降维思想对决策变量进行优化,得到高维变量在低维空间中的表示,再通过K-means策略对个体分组,为种群选择合适的引导个体,提高算法的收敛性和多样性。为验证算法有效性,将该方法应用于多目标粒子群优化算法和非支配排序遗传算法中,对收敛性进行了分析,证明该算法以概率1收敛。通过ZDT、DTLZ系列8个测试问题进行仿真试验,与6个代表性算法进行对比,通过PF、IGD指标、HV指标的评价结果验证其综合性能,并将其应用于水泵调度问题中。综合实验结果表明,所提方法具有较好性能。 展开更多
关键词 降维 多目标优化 lle 自然计算方法 K-MEANS
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部