The authors of this article study the existence and uniqueness of weak so- lutions of the initial-boundary value problem for ut = div((|u|^δ + d0)|↓△|^p(x,t)-2↓△u) + f(x, t) (0 〈 δ 〈 2). They a...The authors of this article study the existence and uniqueness of weak so- lutions of the initial-boundary value problem for ut = div((|u|^δ + d0)|↓△|^p(x,t)-2↓△u) + f(x, t) (0 〈 δ 〈 2). They apply the method of parabolic regularization and Galerkin's method to prove the existence of solutions to the mentioned problem and then prove the uniqueness of the weak solution by arguing by contradiction. The authors prove that the solution approaches 0 in L^2 (Ω) norm as t →∞.展开更多
A brief review of the works of the author and his co-authors on the application of nonlinear analysis, numerical and analytical methods for solving the nonlinear inverse problems (synthesis problems) for optimizing th...A brief review of the works of the author and his co-authors on the application of nonlinear analysis, numerical and analytical methods for solving the nonlinear inverse problems (synthesis problems) for optimizing the different types of radiating systems, is presented in the paper. The synthesis problems are formulated in variational statements and further they are reduced to research and numerical solution of nonlinear integral equations of Hammerstein type. The existence theorems are proof, the investigation methods of nonuniqueness problem of solutions and numerical algorithms of finding the optimal solutions are proved.展开更多
基金Supported by NSFC (10771085)Graduate Innovation Fund of Jilin University(20111034)the 985 program of Jilin University
文摘The authors of this article study the existence and uniqueness of weak so- lutions of the initial-boundary value problem for ut = div((|u|^δ + d0)|↓△|^p(x,t)-2↓△u) + f(x, t) (0 〈 δ 〈 2). They apply the method of parabolic regularization and Galerkin's method to prove the existence of solutions to the mentioned problem and then prove the uniqueness of the weak solution by arguing by contradiction. The authors prove that the solution approaches 0 in L^2 (Ω) norm as t →∞.
文摘A brief review of the works of the author and his co-authors on the application of nonlinear analysis, numerical and analytical methods for solving the nonlinear inverse problems (synthesis problems) for optimizing the different types of radiating systems, is presented in the paper. The synthesis problems are formulated in variational statements and further they are reduced to research and numerical solution of nonlinear integral equations of Hammerstein type. The existence theorems are proof, the investigation methods of nonuniqueness problem of solutions and numerical algorithms of finding the optimal solutions are proved.