Complex hypernetworks are ubiquitous in the real system. It is very important to investigate the evolution mecha- nisms. In this paper, we present a local-world evolving hypernetwork model by taking into account the h...Complex hypernetworks are ubiquitous in the real system. It is very important to investigate the evolution mecha- nisms. In this paper, we present a local-world evolving hypernetwork model by taking into account the hyperedge growth and local-world hyperedge preferential attachment mechanisms. At each time step, a newly added hyperedge encircles a new coming node and a number of nodes from a randomly selected local world. The number of the selected nodes from the local world obeys the uniform distribution and its mean value is m. The analytical and simulation results show that the hyperdegree approximately obeys the power-law form and the exponent of hyperdegree distribution is 7 = 2 + 1/m. Furthermore, we numerically investigate the node degree, hyperedge degree, clustering coefficient, as well as the average distance, and find that the hypemetwork model shares the scale-flee and small-world properties, which shed some light for deeply understanding the evolution mechanism of the real systems.展开更多
In some real complex networks, only a few nodes can obtain the global information about the entire networks, but most of the nodes own only local connections therefore own only local information of the networks. A new...In some real complex networks, only a few nodes can obtain the global information about the entire networks, but most of the nodes own only local connections therefore own only local information of the networks. A new local-world evolving network model is proposed in this paper. In the model, not all the nodes obtain local network information, which is different from the local world network model proposed by Li and Chen (LC model). In the LC model, each node has only the local connections therefore owns only local information about the entire networks. Theoretical analysis and numerical simulation show that adjusting the ratio of the number of nodes obtaining the global information of the network to the total number of nodes can effectively control the valuing range for the power-law exponent of the new network. Therefore, if the topological structure of a complex network, especially its exponent of power-law degree distribution, needs controlling, we just add or take away a few nodes which own the global information of the network.展开更多
In the propagation of an epidemic in a population, individuals adaptively adjust their behavior to avoid the risk of an epidemic. Differently from existing studies where new links are established randomly, a local lin...In the propagation of an epidemic in a population, individuals adaptively adjust their behavior to avoid the risk of an epidemic. Differently from existing studies where new links are established randomly, a local link is established preferentially in this paper. We propose a new preferentially reconnecting edge strategy depending on spatial distance (PR- SD). For the PR-SD strategy, the new link is established at random with probability p and in a shortest distance with the probability 1 p. We establish the epidemic model on an adaptive network using Cellular Automata, and demonstrate the effectiveness of the proposed model by numerical simulations. The results show that the smaller the value of parameter p, the more difficult the epidemic spread is. The PR-SD strategy breaks long-range links and establishes as many short-range links as possible, which causes the network efficiency to decrease quickly and the propagation of the epidemic is restrained effectively.展开更多
In order to reveal the intrinsic properties of scientific collaboration networks, a new local-world evolution model on a scientific collaboration network is proposed by analysing the network growth mechanism. The act ...In order to reveal the intrinsic properties of scientific collaboration networks, a new local-world evolution model on a scientific collaboration network is proposed by analysing the network growth mechanism. The act degree as the measurement of preferential attachment is taken, and the local-world information of nodes is taken into account. Analysis and simulation show that the node degree and the node strength obey the power-law distribution. Low average path length and high clustering coefficient are approved. Experiment indicates that the model can depict efficiently the topological structure and statistical characteristics of real-life scientific collaboration networks.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.71071098,91024026,and 71171136)supported by the Shanghai Rising-Star Program,China(Grant No.11QA1404500)the Leading Academic Discipline Project of Shanghai City,China(Grant No.XTKX2012)
文摘Complex hypernetworks are ubiquitous in the real system. It is very important to investigate the evolution mecha- nisms. In this paper, we present a local-world evolving hypernetwork model by taking into account the hyperedge growth and local-world hyperedge preferential attachment mechanisms. At each time step, a newly added hyperedge encircles a new coming node and a number of nodes from a randomly selected local world. The number of the selected nodes from the local world obeys the uniform distribution and its mean value is m. The analytical and simulation results show that the hyperdegree approximately obeys the power-law form and the exponent of hyperdegree distribution is 7 = 2 + 1/m. Furthermore, we numerically investigate the node degree, hyperedge degree, clustering coefficient, as well as the average distance, and find that the hypemetwork model shares the scale-flee and small-world properties, which shed some light for deeply understanding the evolution mechanism of the real systems.
基金supported by the Scientific Research Starting Foundation of Hangzhou Dianzi University (Grant No KYS091507073)partly by the National High Technology Research and Development Program of China (Grant No 2005AA147030)
文摘In some real complex networks, only a few nodes can obtain the global information about the entire networks, but most of the nodes own only local connections therefore own only local information of the networks. A new local-world evolving network model is proposed in this paper. In the model, not all the nodes obtain local network information, which is different from the local world network model proposed by Li and Chen (LC model). In the LC model, each node has only the local connections therefore owns only local information about the entire networks. Theoretical analysis and numerical simulation show that adjusting the ratio of the number of nodes obtaining the global information of the network to the total number of nodes can effectively control the valuing range for the power-law exponent of the new network. Therefore, if the topological structure of a complex network, especially its exponent of power-law degree distribution, needs controlling, we just add or take away a few nodes which own the global information of the network.
基金Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2010526)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20103223110003)the Ministry of Education Research in the Humanities and Social Sciences Planning Fund (Grant No. 12YJAZH120)
文摘In the propagation of an epidemic in a population, individuals adaptively adjust their behavior to avoid the risk of an epidemic. Differently from existing studies where new links are established randomly, a local link is established preferentially in this paper. We propose a new preferentially reconnecting edge strategy depending on spatial distance (PR- SD). For the PR-SD strategy, the new link is established at random with probability p and in a shortest distance with the probability 1 p. We establish the epidemic model on an adaptive network using Cellular Automata, and demonstrate the effectiveness of the proposed model by numerical simulations. The results show that the smaller the value of parameter p, the more difficult the epidemic spread is. The PR-SD strategy breaks long-range links and establishes as many short-range links as possible, which causes the network efficiency to decrease quickly and the propagation of the epidemic is restrained effectively.
基金supported by the National Basic Research Program of China(2013CB329102)the National Natural Science Foundation of China(61372120,61271019,61101119,61121001,61072057,60902051)+1 种基金the PCSIRT(IRT1049)the Beijing Higher Education Young Elite Teacher Project(YETP0473)
文摘In order to reveal the intrinsic properties of scientific collaboration networks, a new local-world evolution model on a scientific collaboration network is proposed by analysing the network growth mechanism. The act degree as the measurement of preferential attachment is taken, and the local-world information of nodes is taken into account. Analysis and simulation show that the node degree and the node strength obey the power-law distribution. Low average path length and high clustering coefficient are approved. Experiment indicates that the model can depict efficiently the topological structure and statistical characteristics of real-life scientific collaboration networks.