The direct simulation Monte Carlo(DSMC) method is the most mature and wildly used approach for nonequilibrium gas flow simulation.The phenomenological nature of this method brings flexibility to the computation algori...The direct simulation Monte Carlo(DSMC) method is the most mature and wildly used approach for nonequilibrium gas flow simulation.The phenomenological nature of this method brings flexibility to the computation algorithms.In this study,the theoretical foundations to decouple the molecular motion and collision within a time step are discussed in detail,which can be treated as criterions for the DSMC algorithms.Based on the theoretical developments,an improved local time stepping scheme is proposed,which specifies the movement time attribute and the collision time attribute for each representative particle.A free flow about a sphere body is considered as an example,which is compared with the calculations using the published local time stepping technique.The results show that the improved local time scheme is valid and is promising in realizing flow structures with strong variations.展开更多
The matrix version of Symmetric Successive Over Relaxation(matrix-SSOR)scheme has been proved to be more efficient than the standard Lower-Upper Symmetric Gauss-Seidel(LUSGS),but less robust for high-speed flows.In or...The matrix version of Symmetric Successive Over Relaxation(matrix-SSOR)scheme has been proved to be more efficient than the standard Lower-Upper Symmetric Gauss-Seidel(LUSGS),but less robust for high-speed flows.In order to ulteriorly improve the convergence rate as well as numerical stability of matrix-SSOR,two improvements regarding entropy fix and local time step have been proposed and validated.Firstly,an augmented entropy fix method is imposed on the inviscid Jacobian matrix and proved to be effective in two high-speed flows,in which the key parameter in entropy fix is discussed and found to be insensitive within appropriate range of values.Since the time step also has great effects on the numerical stability and convergence rate,a modified cell residual adapted local time step method with consideration of the residual history is developed,which is found to be effective for increasing the convergence rate when the matrix-SSOR is applied,but invalid when the LU-SGS is used.The proposed modified local time step method is also insensitive to the key parameter within appropriate range of values.The two modifications can be conveniently implanted into analogous matrix-type implicit schemes to improve the numerical performance.展开更多
We proposed absorbing interface conditions for the simulation of linear wave propagation on non-uniform meshes.Based on the superposition principle of second-order linear wave equations,we decompose the interface cond...We proposed absorbing interface conditions for the simulation of linear wave propagation on non-uniform meshes.Based on the superposition principle of second-order linear wave equations,we decompose the interface condition problem into two subproblems around the interface:for the first one the conventional artificial absorbing boundary conditions is applied,while for the second one,the local analytic solutions can be derived.The proposed interface conditions permit a two-way transmission of low-frequency waves across mesh interfaces which can be supported by both coarse and fine meshes,and perform a one-way absorption of high-frequency waves which can only be supported by fine meshes when they travel from fine mesh regions to coarse ones.Numerical examples are presented to illustrate the efficiency of the proposed absorbing interface conditions.展开更多
理论分析表明,Laux提出的DSMC(Direct Simulation of Monte Carlo)方法中的当地时间步长法尽管能够显著缩短流场达到稳定所需的CPU计算时间,提高DSMC程序的运行效率,却存在仿真分子运动和碰撞计算复杂,并需要耗费额外计算机内存的缺憾....理论分析表明,Laux提出的DSMC(Direct Simulation of Monte Carlo)方法中的当地时间步长法尽管能够显著缩短流场达到稳定所需的CPU计算时间,提高DSMC程序的运行效率,却存在仿真分子运动和碰撞计算复杂,并需要耗费额外计算机内存的缺憾.对Laux的方法中仿真分子的运动处理时机提出了改进,并改变了其碰撞抽样方法,从而简化了仿真分子的运动和碰撞计算处理,避免了额外的计算机内存消耗.应用改进后的自适应时间步长法,对圆柱的稀薄气体绕流进行了采用和未采用改进的自适应当地时间步长法的对比计算.结果表明,改进后的自适应当地时间步长法能明显缩短流场达到稳定所需的计算时间,对流场模拟结果产生的影响却非常小.展开更多
文摘The direct simulation Monte Carlo(DSMC) method is the most mature and wildly used approach for nonequilibrium gas flow simulation.The phenomenological nature of this method brings flexibility to the computation algorithms.In this study,the theoretical foundations to decouple the molecular motion and collision within a time step are discussed in detail,which can be treated as criterions for the DSMC algorithms.Based on the theoretical developments,an improved local time stepping scheme is proposed,which specifies the movement time attribute and the collision time attribute for each representative particle.A free flow about a sphere body is considered as an example,which is compared with the calculations using the published local time stepping technique.The results show that the improved local time scheme is valid and is promising in realizing flow structures with strong variations.
基金supported by the National Natural Science Foundation of China(Nos.12272397 and 11902334),the National Numerical Wind Tunnel Project,China。
文摘The matrix version of Symmetric Successive Over Relaxation(matrix-SSOR)scheme has been proved to be more efficient than the standard Lower-Upper Symmetric Gauss-Seidel(LUSGS),but less robust for high-speed flows.In order to ulteriorly improve the convergence rate as well as numerical stability of matrix-SSOR,two improvements regarding entropy fix and local time step have been proposed and validated.Firstly,an augmented entropy fix method is imposed on the inviscid Jacobian matrix and proved to be effective in two high-speed flows,in which the key parameter in entropy fix is discussed and found to be insensitive within appropriate range of values.Since the time step also has great effects on the numerical stability and convergence rate,a modified cell residual adapted local time step method with consideration of the residual history is developed,which is found to be effective for increasing the convergence rate when the matrix-SSOR is applied,but invalid when the LU-SGS is used.The proposed modified local time step method is also insensitive to the key parameter within appropriate range of values.The two modifications can be conveniently implanted into analogous matrix-type implicit schemes to improve the numerical performance.
基金supported by the National Key Research and Development Program of China(No.2020YFA0714200)by the National Nature Science Foundation of China(Nos.12125103,12071362)+1 种基金by the Natural Science Foundation of Hubei Province(Nos.2021AAA010,2019CFA007)by the Fundamental Research Funds for the Central Universities.The numerical calculations have been done at the Supercomputing Center of Wuhan University.
文摘We proposed absorbing interface conditions for the simulation of linear wave propagation on non-uniform meshes.Based on the superposition principle of second-order linear wave equations,we decompose the interface condition problem into two subproblems around the interface:for the first one the conventional artificial absorbing boundary conditions is applied,while for the second one,the local analytic solutions can be derived.The proposed interface conditions permit a two-way transmission of low-frequency waves across mesh interfaces which can be supported by both coarse and fine meshes,and perform a one-way absorption of high-frequency waves which can only be supported by fine meshes when they travel from fine mesh regions to coarse ones.Numerical examples are presented to illustrate the efficiency of the proposed absorbing interface conditions.
文摘理论分析表明,Laux提出的DSMC(Direct Simulation of Monte Carlo)方法中的当地时间步长法尽管能够显著缩短流场达到稳定所需的CPU计算时间,提高DSMC程序的运行效率,却存在仿真分子运动和碰撞计算复杂,并需要耗费额外计算机内存的缺憾.对Laux的方法中仿真分子的运动处理时机提出了改进,并改变了其碰撞抽样方法,从而简化了仿真分子的运动和碰撞计算处理,避免了额外的计算机内存消耗.应用改进后的自适应时间步长法,对圆柱的稀薄气体绕流进行了采用和未采用改进的自适应当地时间步长法的对比计算.结果表明,改进后的自适应当地时间步长法能明显缩短流场达到稳定所需的计算时间,对流场模拟结果产生的影响却非常小.