We developed a species-specific PCR method to identify species among dehydrated products of 10 sea cucumber species.Ten reverse species-specific primers designed from the 16 S rRNA gene,in combination with one forward...We developed a species-specific PCR method to identify species among dehydrated products of 10 sea cucumber species.Ten reverse species-specific primers designed from the 16 S rRNA gene,in combination with one forward universal primer,generated PCR fragments of ca.270 bp length for each species.The specificity of the PCR assay was tested with DNA of samples of 21 sea cucumber species.Amplification was observed in specific species only.The species-specific PCR method we developed was successfully applied to authenticate species of commercial products of dehydrated sea cucumber,and was proven to be a useful,rapid,and low-cost technique to identify the origin of the sea cucumber product.展开更多
False data injection attacks(FDIAs)can manipulate measurement data from Supervisory Control and Data Acquisition(SCADA)system and threat state estimation in smart grids.Blind FDIAs(BFDIAs)enhance traditional FDIAs,whi...False data injection attacks(FDIAs)can manipulate measurement data from Supervisory Control and Data Acquisition(SCADA)system and threat state estimation in smart grids.Blind FDIAs(BFDIAs)enhance traditional FDIAs,which eliminate the limitation of grasping measurement Jacobian matrix H in advance,but when there are outliers in measurement data,attack performance is degraded.In this paper,improved BFDIAs are proposed.In off-line phase,lowdimensional measurement matrix without outliers calculated by Linear Local Tangent Space Alignment algorithm(LLTSA)is sent into Continuous Deep Belief Network(CDBN)as training data to learn their probability distribution.In on-line phase,real-time low-dimensional measurement matrix with outliers are sent into the trained model as inputs,and outputs are reconstructed by the probability distribution in off-line phase,which eliminates the influence of outliers indirectly.Simulations are implemented on PJM 5-bus and IEEE 14-bus systems to verify the performance of proposed strategy compared with PCA-based BFDIAs.展开更多
Purified terephthalic acid(PTA) is an important chemical raw material. P-xylene(PX) is transformed to terephthalic acid(TA) through oxidation process and TA is refined to produce PTA. The PX oxidation reaction is a co...Purified terephthalic acid(PTA) is an important chemical raw material. P-xylene(PX) is transformed to terephthalic acid(TA) through oxidation process and TA is refined to produce PTA. The PX oxidation reaction is a complex process involving three-phase reaction of gas, liquid and solid. To monitor the process and to improve the product quality, as well as to visualize the fault type clearly, a fault diagnosis method based on selforganizing map(SOM) and high dimensional feature extraction method, local tangent space alignment(LTSA),is proposed. In this method, LTSA can reduce the dimension and keep the topology information simultaneously,and SOM distinguishes various states on the output map. Monitoring results of PX oxidation reaction process indicate that the LTSA–SOM can well detect and visualize the fault type.展开更多
To solve the problem of variations in radio frequency characteristics among different devices,transfer learning is applied to transform device diversity to domain adaptation in the indoor localization algorithm.A robu...To solve the problem of variations in radio frequency characteristics among different devices,transfer learning is applied to transform device diversity to domain adaptation in the indoor localization algorithm.A robust indoor localization algorithm based on the aligned fingerprints and ensemble learning called correlation alignment for localization(CALoc)is proposed with low computational complexity.The second-order statistical properties of fingerprints in the offline and online phase are needed to be aligned.The real-time online calibration method mitigates the impact of device heterogeneity largely.Without any time-consuming deep learning retraining process,CALoc online only needs 0.11 s.The effectiveness and efficiency of CALoc are verified by realistic experiments.The results show that compared to the traditional algorithms,a significant performance gain is achieved and that it achieves better positioning accuracy with a 19%improvement.展开更多
基金Supported by the National Natural Science Foundation of China(No.31201999)the Natural Science Foundation of Guangdong Province,China(No.S2011040000463)+4 种基金the Foundation for Distinguished Young Talents in Higher Education of Guangdong,China(No.LYM11086)the Key Laboratory Program of Tropical Marine Bio-Resources and Ecology,Chinese Academy of Science(No.LMB111004)the China Spark Program(Nos.2012GA780007,2012GA780020,2012GA780008)the National Students'Innovation and Entrepreneurship Training Project(No.201210579031)the Zhanjiang Foundation for Science and Technology,China(Nos.2011C3104009,2011D0244,2012C3102018)
文摘We developed a species-specific PCR method to identify species among dehydrated products of 10 sea cucumber species.Ten reverse species-specific primers designed from the 16 S rRNA gene,in combination with one forward universal primer,generated PCR fragments of ca.270 bp length for each species.The specificity of the PCR assay was tested with DNA of samples of 21 sea cucumber species.Amplification was observed in specific species only.The species-specific PCR method we developed was successfully applied to authenticate species of commercial products of dehydrated sea cucumber,and was proven to be a useful,rapid,and low-cost technique to identify the origin of the sea cucumber product.
基金supported by the Funds of the National Key Research and Development Program of China(Grant No.2020YFE0201100)the Funds of National Science of China(Grant nos.61973062,61973068)the Fundamental Research Funds for the Central Universities(Grant nos.N2004010,N2104021,N182008004).
文摘False data injection attacks(FDIAs)can manipulate measurement data from Supervisory Control and Data Acquisition(SCADA)system and threat state estimation in smart grids.Blind FDIAs(BFDIAs)enhance traditional FDIAs,which eliminate the limitation of grasping measurement Jacobian matrix H in advance,but when there are outliers in measurement data,attack performance is degraded.In this paper,improved BFDIAs are proposed.In off-line phase,lowdimensional measurement matrix without outliers calculated by Linear Local Tangent Space Alignment algorithm(LLTSA)is sent into Continuous Deep Belief Network(CDBN)as training data to learn their probability distribution.In on-line phase,real-time low-dimensional measurement matrix with outliers are sent into the trained model as inputs,and outputs are reconstructed by the probability distribution in off-line phase,which eliminates the influence of outliers indirectly.Simulations are implemented on PJM 5-bus and IEEE 14-bus systems to verify the performance of proposed strategy compared with PCA-based BFDIAs.
基金Supported by the Major State Basic Research Development Program of China(2012CB720500)the National Natural Science Foundation of China(6133301021276078)+3 种基金the National Science Fund for Outstanding Young Scholars(61222303)the Fundamental Research Funds for the Central Universities,Shanghai Rising-Star Program(13QH1401200)the Program for New Century Excellent Talents in University(NCET-10-0885)Shanghai R&D Platform Construction Program(13DZ2295300)
文摘Purified terephthalic acid(PTA) is an important chemical raw material. P-xylene(PX) is transformed to terephthalic acid(TA) through oxidation process and TA is refined to produce PTA. The PX oxidation reaction is a complex process involving three-phase reaction of gas, liquid and solid. To monitor the process and to improve the product quality, as well as to visualize the fault type clearly, a fault diagnosis method based on selforganizing map(SOM) and high dimensional feature extraction method, local tangent space alignment(LTSA),is proposed. In this method, LTSA can reduce the dimension and keep the topology information simultaneously,and SOM distinguishes various states on the output map. Monitoring results of PX oxidation reaction process indicate that the LTSA–SOM can well detect and visualize the fault type.
基金The National Key Research and Development Program of China(No.2018YFB1802400)the National Natural Science Foundation of China(No.61571123)the Research Fund of National M obile Communications Research Laboratory,Southeast University(No.2020A03)
文摘To solve the problem of variations in radio frequency characteristics among different devices,transfer learning is applied to transform device diversity to domain adaptation in the indoor localization algorithm.A robust indoor localization algorithm based on the aligned fingerprints and ensemble learning called correlation alignment for localization(CALoc)is proposed with low computational complexity.The second-order statistical properties of fingerprints in the offline and online phase are needed to be aligned.The real-time online calibration method mitigates the impact of device heterogeneity largely.Without any time-consuming deep learning retraining process,CALoc online only needs 0.11 s.The effectiveness and efficiency of CALoc are verified by realistic experiments.The results show that compared to the traditional algorithms,a significant performance gain is achieved and that it achieves better positioning accuracy with a 19%improvement.