电池管理系统BMS(battery management system)是蓄电池储能技术中不可或缺的环节,而电池健康状态SOH(state of health)估算是BMS的重要功能之一。SOH可以为操作员提供电池实际可用容量及老化状态相关信息,进而为电池控制决策提供参考。...电池管理系统BMS(battery management system)是蓄电池储能技术中不可或缺的环节,而电池健康状态SOH(state of health)估算是BMS的重要功能之一。SOH可以为操作员提供电池实际可用容量及老化状态相关信息,进而为电池控制决策提供参考。介绍了锂电池的SOH的含义,阐述了导致锂电池老化和可用容量下降的原因,并着重对当前常见的蓄电池SOH估算方法进行了概括和分析,同时对各种SOH估算方法中存在的问题进行了探讨。展开更多
The ever-increasing environmental/energy crisis as well as the rapid upgrading of mobile devices had stimulated intensive research attention on promising alternative energy storage and conversion devices.Among these d...The ever-increasing environmental/energy crisis as well as the rapid upgrading of mobile devices had stimulated intensive research attention on promising alternative energy storage and conversion devices.Among these devices,alkali metal ion batteries,such as lithium-ion batteries(LIBs) had attracted increasing research attention due to its several advantages including,environmental friendliness,high power density,long cycle life and excellent reversibility.It had been widely used in consumer electronics,electric vehicles,and large power grids et ac.Silicon-based(silicon and their oxides,carbides) anodes had been widely studied.Its several advantages including low cost,high theoretical capacity,natural abundance,and environmental friendliness,which shows great potential as anodes of LIBs.In this review,we summarized the recently progress in the synthetic method of silicon matrix composites.The empirical method for prelithiation of silicon-based materials were also provided.Further,we also reviewed some novel characterization methods.Finally,the new design,preparation methods and properties of these nano materials were reviewed and compared.We hoped that this review can provide a general overview of recent progress and we briefly highlighted the current challenges and prospects,and will clarify the future trend of silicon anode LIBs research.展开更多
Lithium-sulfur batteries can deliver significantly higher specific capacity than standard lithium ion batteries, and represent the next generation of energy storage devices for both electric vehicles and mobile device...Lithium-sulfur batteries can deliver significantly higher specific capacity than standard lithium ion batteries, and represent the next generation of energy storage devices for both electric vehicles and mobile devices. However, the lithium-sulfur technology today is plagued with numerous challenges, including poor sulfur conductivity, large volumetric expansion, severe polysulfide shuttling and low sulfur utilization, which prevent its wide-spread adoption in the energy storage industry. Here we report a freestanding three-dimensional (3D) graphene frame- work for highly efficient loading of sulfur particles and creating a high capacity sulfur cathode. Using a one-pot synthesis method, we show a mechanically robust graphene-sulfur composite can be prepared with the highest sulfur weight content (90% sulfur) reported to date, and can be directly used as the sulfur cathode without additional binders or conductive additives. The graphene-sulfur composite features a highly interconnected graphene network ensuring excellent conductivity and a 3D porous structure allowing efficient ion transport and accommodating large volume expansion. Additionally, the 3D graphene framework can also function as an effective encapsulation layer to retard the polysulfide shuttling effect, thus enabling a highly robust sulfur cathode. Electrochemical studies show that such composite can deliver a highest capacity of 969 mAh-g-1, a record high number achieved for all sulfur cathodes reported to date when normalized by the total mass of the entire electrode. Our studies demonstrate that the 3D graphene framework represents an attractive scaffold material for a high performance lithium sulfur battery cathode, and could enable exciting opportunities for ultra-high capacity energy storage applications.展开更多
In the electrical energy transformation process,the grid-level energy storage system plays an essential role in balancing power generation and utilization.Batteries have considerable potential for application to grid-...In the electrical energy transformation process,the grid-level energy storage system plays an essential role in balancing power generation and utilization.Batteries have considerable potential for application to grid-level energy storage systems because of their rapid response,modularization,and flexible installation.Among several battery technologies,lithium-ion batteries(LIBs)exhibit high energy efficiency,long cycle life,and relatively high energy density.In this perspective,the properties of LIBs,including their operation mechanism,battery design and construction,and advantages and disadvantages,have been analyzed in detail.Moreover,the performance of LIBs applied to grid-level energy storage systems is analyzed in terms of the following grid services:(1)frequency regulation;(2)peak shifting;(3)integration with renewable energy sources;and(4)power management.In addition,the challenges encountered in the application of LIBs are discussed and possible research directions aimed at overcoming these challenges are proposed to provide insight into the development of grid-level energy storage systems.展开更多
Layered bismuth sulfide (Bi2S3) has emerged as an important type of Li-storage material due to its high theoretical capacity and intriguing reaction mechanism. The engineering and fabrication of Bi2S3 materials with...Layered bismuth sulfide (Bi2S3) has emerged as an important type of Li-storage material due to its high theoretical capacity and intriguing reaction mechanism. The engineering and fabrication of Bi2S3 materials with large capacity and stable cyclability via a facile approach is essential, but still remains a great challenge. Herein, we employ a one-pot hydrothermal route to fabricate carbon-coated Bi2S3 nanomeshes (Bi2S3/C) as an efficient Li-storage material. The nanomeshes serve as a highly conducting and porous scaffold facilitating electron and ion transport, while the carbon coating layer provides flexible space for efficient reduction of mechanical strain upon electrochemical cycling. Consequently, the fabricated Bi2S3/C exhibits a high and stable capacity delivery in the 0.01-2.5 V region, notably outperforming previously reported Bi2S3 materials. It is able to discharge 472 mA·h·g^-1 at 120 mA.g^-1 over 50 full cycles, and to retain 301 mA·h·g^-1 in the 40th cycle at 600 mA.g^-l, demonstrating the potential of Bi2S3 as electrode materials for rechargeable batteries.展开更多
Lithium–sulfur batteries with an ultrahigh theoretical energy density of 2600 Wh kg^(−1) are highly consid-ered as desirable next-generation energy storage devices that will meet the growing demand of energy consumpt...Lithium–sulfur batteries with an ultrahigh theoretical energy density of 2600 Wh kg^(−1) are highly consid-ered as desirable next-generation energy storage devices that will meet the growing demand of energy consumption worldwide.However,complicated sul-fur redox reactions and polysulfide shuttling signifi-cantly postpone the applications of lithium-sulfur batteries with rapid capacity decay and low Coulom-bic efficiency.展开更多
The energy crisis and environmental pollution drive more attention to the development and utilization of renewable energy.Considering the capricious nature of renewable energy resource,it has difficulty supplying elec...The energy crisis and environmental pollution drive more attention to the development and utilization of renewable energy.Considering the capricious nature of renewable energy resource,it has difficulty supplying electricity directly to consumers stably and efficiently,which calls for energy storage systems to collect energy and release electricity at peak periods.Due to their flexible power and energy,quick response,and high energy conversion efficiency,lithium-ion batteries stand out among multiple energy storage technologies and are rapidly deployed in the grid.Pursuing superior performance and ensuring the safety of energy storage systems,intrinsically safe solid-state electrolytes are expected as an ideal alternative to liquid electrolytes.In this review,we systematically evaluate the priorities and issues of traditional lithium-ion batteries in grid energy storage.Beyond lithium-ion batteries containing liquid electrolytes,solid-state lithium-ion batteries have the potential to play a more significant role in grid energy storage.The challenges of developing solid-state lithium-ion batteries,such as low ionic conductivity of the electrolyte,unstable electrode/electrolyte interface,and complicated fabrication process,are discussed in detail.Additionally,the safety of solid-state lithium-ion batteries is re-examined.Following the obtained insights,inspiring prospects for solid-state lithium-ion batteries in grid energy storage are depicted.展开更多
Solid-state electrolytes have a lot of advantages, including the inhibition of alkali metal dendrite growth,the elimination of liquid electrolyte leakage, the improvement of safety, the enhancement of energy density a...Solid-state electrolytes have a lot of advantages, including the inhibition of alkali metal dendrite growth,the elimination of liquid electrolyte leakage, the improvement of safety, the enhancement of energy density and power density, and the potential application in flexible electronics. Therefore, solid-state electrolytes have become one of the hottest topics in energy-storage research area. An up-to-date review on solid-state electrolytes is of not only scientific significance but also technological imperative. Here,recent progress in solid-state electrolytes for alkali ion batteries is summarized. Through this comprehensive review and the comparison of different solid-state electrolytes, we hope it can give a clear figure of the state-of-art status and the development trend of the future solid-state electrolytes.展开更多
MXenes have attracted great interest in various fields,and pillared MXenes open a new path with larger interlayer spacing.However,the further study of pillared MXenes is blocked at multilayered state due to serious re...MXenes have attracted great interest in various fields,and pillared MXenes open a new path with larger interlayer spacing.However,the further study of pillared MXenes is blocked at multilayered state due to serious restacking phenomenon of few-layered MXene nanosheets.In this work,for the first time,we designed a facile NH4+method to fundamentally solve the restacking issues of MXene nanosheets and succeeded in achieving pillared few-layered MXene.Sn nanocomplex pillared few-layered Ti3C2Tx(STCT)composites were synthesized by introducing atomic Sn nanocomplex into interlayer of pillared few-layered Ti3C2Tx MXenes via pillaring technique.The MXene matrix can inhibit Sn nanocomplex particles agglomeration and serve as conductive network.Meanwhile,the Sn nanocomplex particles can further open the interlayer spacing of Ti3C2Tx during lithiation/delithiation processes and therefore generate extra capacity.Benefiting from the“pillar effect,”the STCT composites can maintain 1016 mAh g^?1 after 1200 cycles at 2000 mA g^?1 and deliver a stable capacity of 680 mAh g^?1 at 5 A g^?1,showing one of the best performances among MXene-based composites.This work will provide a new way for the development of pillared MXenes and their energy storage due to significant breakthrough from multilayered state to few-layered one.展开更多
文摘电池管理系统BMS(battery management system)是蓄电池储能技术中不可或缺的环节,而电池健康状态SOH(state of health)估算是BMS的重要功能之一。SOH可以为操作员提供电池实际可用容量及老化状态相关信息,进而为电池控制决策提供参考。介绍了锂电池的SOH的含义,阐述了导致锂电池老化和可用容量下降的原因,并着重对当前常见的蓄电池SOH估算方法进行了概括和分析,同时对各种SOH估算方法中存在的问题进行了探讨。
基金financially supported by the International Science & Technology Cooperation Program of China under 2019YFE0100200the NSAF (Grant No. U1930113)+2 种基金the Beijing Natural Science Foundation (Grant No. L182022)the 13th Five-Year Plan of Advance Research and Sharing Techniques by the Equipment Department (41421040202)the SAST (2018-114).
文摘The ever-increasing environmental/energy crisis as well as the rapid upgrading of mobile devices had stimulated intensive research attention on promising alternative energy storage and conversion devices.Among these devices,alkali metal ion batteries,such as lithium-ion batteries(LIBs) had attracted increasing research attention due to its several advantages including,environmental friendliness,high power density,long cycle life and excellent reversibility.It had been widely used in consumer electronics,electric vehicles,and large power grids et ac.Silicon-based(silicon and their oxides,carbides) anodes had been widely studied.Its several advantages including low cost,high theoretical capacity,natural abundance,and environmental friendliness,which shows great potential as anodes of LIBs.In this review,we summarized the recently progress in the synthetic method of silicon matrix composites.The empirical method for prelithiation of silicon-based materials were also provided.Further,we also reviewed some novel characterization methods.Finally,the new design,preparation methods and properties of these nano materials were reviewed and compared.We hoped that this review can provide a general overview of recent progress and we briefly highlighted the current challenges and prospects,and will clarify the future trend of silicon anode LIBs research.
文摘Lithium-sulfur batteries can deliver significantly higher specific capacity than standard lithium ion batteries, and represent the next generation of energy storage devices for both electric vehicles and mobile devices. However, the lithium-sulfur technology today is plagued with numerous challenges, including poor sulfur conductivity, large volumetric expansion, severe polysulfide shuttling and low sulfur utilization, which prevent its wide-spread adoption in the energy storage industry. Here we report a freestanding three-dimensional (3D) graphene frame- work for highly efficient loading of sulfur particles and creating a high capacity sulfur cathode. Using a one-pot synthesis method, we show a mechanically robust graphene-sulfur composite can be prepared with the highest sulfur weight content (90% sulfur) reported to date, and can be directly used as the sulfur cathode without additional binders or conductive additives. The graphene-sulfur composite features a highly interconnected graphene network ensuring excellent conductivity and a 3D porous structure allowing efficient ion transport and accommodating large volume expansion. Additionally, the 3D graphene framework can also function as an effective encapsulation layer to retard the polysulfide shuttling effect, thus enabling a highly robust sulfur cathode. Electrochemical studies show that such composite can deliver a highest capacity of 969 mAh-g-1, a record high number achieved for all sulfur cathodes reported to date when normalized by the total mass of the entire electrode. Our studies demonstrate that the 3D graphene framework represents an attractive scaffold material for a high performance lithium sulfur battery cathode, and could enable exciting opportunities for ultra-high capacity energy storage applications.
文摘In the electrical energy transformation process,the grid-level energy storage system plays an essential role in balancing power generation and utilization.Batteries have considerable potential for application to grid-level energy storage systems because of their rapid response,modularization,and flexible installation.Among several battery technologies,lithium-ion batteries(LIBs)exhibit high energy efficiency,long cycle life,and relatively high energy density.In this perspective,the properties of LIBs,including their operation mechanism,battery design and construction,and advantages and disadvantages,have been analyzed in detail.Moreover,the performance of LIBs applied to grid-level energy storage systems is analyzed in terms of the following grid services:(1)frequency regulation;(2)peak shifting;(3)integration with renewable energy sources;and(4)power management.In addition,the challenges encountered in the application of LIBs are discussed and possible research directions aimed at overcoming these challenges are proposed to provide insight into the development of grid-level energy storage systems.
文摘Layered bismuth sulfide (Bi2S3) has emerged as an important type of Li-storage material due to its high theoretical capacity and intriguing reaction mechanism. The engineering and fabrication of Bi2S3 materials with large capacity and stable cyclability via a facile approach is essential, but still remains a great challenge. Herein, we employ a one-pot hydrothermal route to fabricate carbon-coated Bi2S3 nanomeshes (Bi2S3/C) as an efficient Li-storage material. The nanomeshes serve as a highly conducting and porous scaffold facilitating electron and ion transport, while the carbon coating layer provides flexible space for efficient reduction of mechanical strain upon electrochemical cycling. Consequently, the fabricated Bi2S3/C exhibits a high and stable capacity delivery in the 0.01-2.5 V region, notably outperforming previously reported Bi2S3 materials. It is able to discharge 472 mA·h·g^-1 at 120 mA.g^-1 over 50 full cycles, and to retain 301 mA·h·g^-1 in the 40th cycle at 600 mA.g^-l, demonstrating the potential of Bi2S3 as electrode materials for rechargeable batteries.
基金This work was supported by National Key Re-search and Development Program(2016YFA0202500,2015CB932500,and2016YFA0200102)National Natural Scientific Foundation of China(21676160 and 21825501)Tsinghua University Initiative Scientific Research Program.
文摘Lithium–sulfur batteries with an ultrahigh theoretical energy density of 2600 Wh kg^(−1) are highly consid-ered as desirable next-generation energy storage devices that will meet the growing demand of energy consumption worldwide.However,complicated sul-fur redox reactions and polysulfide shuttling signifi-cantly postpone the applications of lithium-sulfur batteries with rapid capacity decay and low Coulom-bic efficiency.
基金supported by the National Key R&D Program of China(2021YFB2400200)the CAS Project for Young Scientists in Basic Research(YSBR-058)+4 种基金the“Transformational Technologies for Clean Energy and Demonstration”,Strategic Priority Research Program of the Chinese Academy of Sciences(XDA21070300)the National Natural Science Foundation of China(22279148,21905286 and 22005314)the China Postdoctoral Science Foundation(2019M660805)the Special Financial Grant from the China Postdoctoral Science Foundation(2020T130658)Beijing National Laboratory for Molecular Sciences(2019BMS20022)。
文摘The energy crisis and environmental pollution drive more attention to the development and utilization of renewable energy.Considering the capricious nature of renewable energy resource,it has difficulty supplying electricity directly to consumers stably and efficiently,which calls for energy storage systems to collect energy and release electricity at peak periods.Due to their flexible power and energy,quick response,and high energy conversion efficiency,lithium-ion batteries stand out among multiple energy storage technologies and are rapidly deployed in the grid.Pursuing superior performance and ensuring the safety of energy storage systems,intrinsically safe solid-state electrolytes are expected as an ideal alternative to liquid electrolytes.In this review,we systematically evaluate the priorities and issues of traditional lithium-ion batteries in grid energy storage.Beyond lithium-ion batteries containing liquid electrolytes,solid-state lithium-ion batteries have the potential to play a more significant role in grid energy storage.The challenges of developing solid-state lithium-ion batteries,such as low ionic conductivity of the electrolyte,unstable electrode/electrolyte interface,and complicated fabrication process,are discussed in detail.Additionally,the safety of solid-state lithium-ion batteries is re-examined.Following the obtained insights,inspiring prospects for solid-state lithium-ion batteries in grid energy storage are depicted.
基金supported by the National 1000-Talents Programthe National Natural Science Foundation of China (51203067, 51773071)+1 种基金Wuhan Science and Technology Bureau (2017010201010141)the Fundamental Research Funds for the Central Universities (HUST: 2017KFYXJJ023)
文摘Solid-state electrolytes have a lot of advantages, including the inhibition of alkali metal dendrite growth,the elimination of liquid electrolyte leakage, the improvement of safety, the enhancement of energy density and power density, and the potential application in flexible electronics. Therefore, solid-state electrolytes have become one of the hottest topics in energy-storage research area. An up-to-date review on solid-state electrolytes is of not only scientific significance but also technological imperative. Here,recent progress in solid-state electrolytes for alkali ion batteries is summarized. Through this comprehensive review and the comparison of different solid-state electrolytes, we hope it can give a clear figure of the state-of-art status and the development trend of the future solid-state electrolytes.
基金the National Natural Science Foundation of China(Grant No.51901206,51822104)the Training Program of Major Basic Research Project of Provincial Natural Science Foundation of Guangdong(2017B030308001).
文摘MXenes have attracted great interest in various fields,and pillared MXenes open a new path with larger interlayer spacing.However,the further study of pillared MXenes is blocked at multilayered state due to serious restacking phenomenon of few-layered MXene nanosheets.In this work,for the first time,we designed a facile NH4+method to fundamentally solve the restacking issues of MXene nanosheets and succeeded in achieving pillared few-layered MXene.Sn nanocomplex pillared few-layered Ti3C2Tx(STCT)composites were synthesized by introducing atomic Sn nanocomplex into interlayer of pillared few-layered Ti3C2Tx MXenes via pillaring technique.The MXene matrix can inhibit Sn nanocomplex particles agglomeration and serve as conductive network.Meanwhile,the Sn nanocomplex particles can further open the interlayer spacing of Ti3C2Tx during lithiation/delithiation processes and therefore generate extra capacity.Benefiting from the“pillar effect,”the STCT composites can maintain 1016 mAh g^?1 after 1200 cycles at 2000 mA g^?1 and deliver a stable capacity of 680 mAh g^?1 at 5 A g^?1,showing one of the best performances among MXene-based composites.This work will provide a new way for the development of pillared MXenes and their energy storage due to significant breakthrough from multilayered state to few-layered one.