Presents information on a study which focused on the numerical solution of initial value problems for systems of neutral differential equations. Adaptations of linear multistep methods; Linear stability of linear mult...Presents information on a study which focused on the numerical solution of initial value problems for systems of neutral differential equations. Adaptations of linear multistep methods; Linear stability of linear multistep method; Presentation of numerical equations.展开更多
For the numerical treatment of Hamiltonian differential equations, symplectic integrators are the most suitable choice, and methods that are conjugate to a symplectic integrator share the same good long-time behavior....For the numerical treatment of Hamiltonian differential equations, symplectic integrators are the most suitable choice, and methods that are conjugate to a symplectic integrator share the same good long-time behavior. This note characterizes linear multistep methods whose underlying one-step method is conjugate to a symplectic integrator. The bounded- hess of parasitic solution components is not addressed.展开更多
This paper deals with the stability of linear multistep methods for multidimensional differential systems with distributed delays. The delay-dependent stability of linear multistep methods with compound quadrature rul...This paper deals with the stability of linear multistep methods for multidimensional differential systems with distributed delays. The delay-dependent stability of linear multistep methods with compound quadrature rules is studied. Several new sufficient criteria of delay-dependent stability are obtained by means of the argument principle. An algorithm is provided to check delay-dependent stability. An example that illustrates the effectiveness of the derived theoretical results is given.展开更多
In this paper, we solve chiral nonlinear Schrodinger equation (CNSE) numerically. Two numerical methods are derived using the explicit Runge-Kutta method of order four and the linear multistep method (Predictor-Correc...In this paper, we solve chiral nonlinear Schrodinger equation (CNSE) numerically. Two numerical methods are derived using the explicit Runge-Kutta method of order four and the linear multistep method (Predictor-Corrector method of fourth order). The resulting schemes of fourth order accuracy in spatial and temporal directions. The CNSE is non-integrable and has two kinds of soliton solutions: bright and dark soliton. The exact solutions and the conserved quantities of CNSE are used to display the efficiency and robustness of the numerical methods we derived. Interaction of two bright solitons for different parameters is also displayed.展开更多
This paper presents a study on the development and implementation of a second derivative method for the solution of stiff first order initial value problems of ordinary differential equations using method of interpola...This paper presents a study on the development and implementation of a second derivative method for the solution of stiff first order initial value problems of ordinary differential equations using method of interpolation and collocation of polynomial approximate solution. The results of this paper bring some useful information. The constructed methods are A-stable up to order 8. As it is shown in the numerical examples, the new methods are superior for stiff systems.展开更多
We consider direct solution to third order ordinary differential equations in this paper. Method of collection and interpolation of the power series approximant of single variable is considered to derive a linear mult...We consider direct solution to third order ordinary differential equations in this paper. Method of collection and interpolation of the power series approximant of single variable is considered to derive a linear multistep method (LMM) with continuous coefficient. Block method was later adopted to generate the independent solution at selected grid points. The properties of the block viz: order, zero stability and stability region are investigated. Our method was tested on third order ordinary differential equation and found to give better result when compared with existing methods.展开更多
文摘Presents information on a study which focused on the numerical solution of initial value problems for systems of neutral differential equations. Adaptations of linear multistep methods; Linear stability of linear multistep method; Presentation of numerical equations.
基金E-Institutes of Shanghai Municipal Education Commission (E03004) Shanghai Municipal Education Commission (04DB07)+1 种基金 Shanghai Science and Technology Committee (03QA14036) NSFC (10671130) and the Special Funds for Major Specialties of Shanghai Education Committee
基金the Swiss National Science Foundation, project No.200020-121561
文摘For the numerical treatment of Hamiltonian differential equations, symplectic integrators are the most suitable choice, and methods that are conjugate to a symplectic integrator share the same good long-time behavior. This note characterizes linear multistep methods whose underlying one-step method is conjugate to a symplectic integrator. The bounded- hess of parasitic solution components is not addressed.
基金Project supported by the National Natural Science Foundation of China(No.11471217)
文摘This paper deals with the stability of linear multistep methods for multidimensional differential systems with distributed delays. The delay-dependent stability of linear multistep methods with compound quadrature rules is studied. Several new sufficient criteria of delay-dependent stability are obtained by means of the argument principle. An algorithm is provided to check delay-dependent stability. An example that illustrates the effectiveness of the derived theoretical results is given.
文摘In this paper, we solve chiral nonlinear Schrodinger equation (CNSE) numerically. Two numerical methods are derived using the explicit Runge-Kutta method of order four and the linear multistep method (Predictor-Corrector method of fourth order). The resulting schemes of fourth order accuracy in spatial and temporal directions. The CNSE is non-integrable and has two kinds of soliton solutions: bright and dark soliton. The exact solutions and the conserved quantities of CNSE are used to display the efficiency and robustness of the numerical methods we derived. Interaction of two bright solitons for different parameters is also displayed.
文摘This paper presents a study on the development and implementation of a second derivative method for the solution of stiff first order initial value problems of ordinary differential equations using method of interpolation and collocation of polynomial approximate solution. The results of this paper bring some useful information. The constructed methods are A-stable up to order 8. As it is shown in the numerical examples, the new methods are superior for stiff systems.
文摘We consider direct solution to third order ordinary differential equations in this paper. Method of collection and interpolation of the power series approximant of single variable is considered to derive a linear multistep method (LMM) with continuous coefficient. Block method was later adopted to generate the independent solution at selected grid points. The properties of the block viz: order, zero stability and stability region are investigated. Our method was tested on third order ordinary differential equation and found to give better result when compared with existing methods.