期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Genetic programming for predictions of effectiveness of rolling dynamic compaction with dynamic cone penetrometer test results 被引量:2
1
作者 R.A.T.M.Ranasinghe M.B.Jaksa +1 位作者 F.Pooya Nejad Y.L.Kuo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第4期815-823,共9页
Rolling dynamic compaction (RDC),which employs non-circular module towed behind a tractor,is an innovative soil compaction method that has proven to be successful in many ground improvement applications.RDC involves r... Rolling dynamic compaction (RDC),which employs non-circular module towed behind a tractor,is an innovative soil compaction method that has proven to be successful in many ground improvement applications.RDC involves repeatedly delivering high-energy impact blows onto the ground surface,which improves soil density and thus soil strength and stiffness.However,there exists a lack of methods to predict the effectiveness of RDC in different ground conditions,which has become a major obstacle to its adoption.For this,in this context,a prediction model is developed based on linear genetic programming (LGP),which is one of the common approaches in application of artificial intelligence for nonlinear forecasting.The model is based on in situ density-related data in terms of dynamic cone penetrometer (DCP) results obtained from several projects that have employed the 4-sided,8-t impact roller (BH-1300).It is shown that the model is accurate and reliable over a range of soil types.Furthermore,a series of parametric studies confirms its robustness in generalizing data.In addition,the results of the comparative study indicate that the optimal LGP model has a better predictive performance than the existing artificial neural network (ANN) model developed earlier by the authors. 展开更多
关键词 Ground improvement ROLLING DYNAMIC compaction (RDC) linear genetic programming (lgp) DYNAMIC cone PENETROMETER (DCP) test
下载PDF
基于元胞自动机的线性遗传程序设计算法 被引量:3
2
作者 周恺卿 乐晓波 +1 位作者 潘小海 莫礼平 《计算机工程》 CAS CSCD 北大核心 2011年第16期161-163,共3页
为维持进化过程中的种群多样性,并进一步提高求解问题的精确度,在SGP算法的基础上引入元胞自动机模型理论,提出一种能够实现具有细粒度并行的CSGP算法。该算法可提高求解问题的成功率以及减少进化代数,对比实验表明,CSGP算法较GEP算法和... 为维持进化过程中的种群多样性,并进一步提高求解问题的精确度,在SGP算法的基础上引入元胞自动机模型理论,提出一种能够实现具有细粒度并行的CSGP算法。该算法可提高求解问题的成功率以及减少进化代数,对比实验表明,CSGP算法较GEP算法和SGP算法在求解符号回归的问题上有较好的性能优势。 展开更多
关键词 线性遗传编程 基因表达式编程 元胞自动机 符号回归
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部