This paper introduces an interval valued linear fractional programming problem (IVLFP). An IVLFP is a linear frac-tional programming problem with interval coefficients in the objective function. It is proved that we c...This paper introduces an interval valued linear fractional programming problem (IVLFP). An IVLFP is a linear frac-tional programming problem with interval coefficients in the objective function. It is proved that we can convert an IVLFP to an optimization problem with interval valued objective function which its bounds are linear fractional functions. Also there is a discussion for the solutions of this kind of optimization problem.展开更多
Most of the current methods for solving linear fractional programming (LFP) problems depend on the simplex type method. In this paper, we present a new approach for solving linear fractional programming problem in whi...Most of the current methods for solving linear fractional programming (LFP) problems depend on the simplex type method. In this paper, we present a new approach for solving linear fractional programming problem in which the objective function is a linear fractional function, while constraint functions are in the form of linear inequalities. This approach does not depend on the simplex type method. Here first we transform this LFP problem into linear programming (LP) problem and hence solve this problem algebraically using the concept of duality. Two simple examples to illustrate our algorithm are given. And also we compare this approach with other available methods for solving LFP problems.展开更多
文摘This paper introduces an interval valued linear fractional programming problem (IVLFP). An IVLFP is a linear frac-tional programming problem with interval coefficients in the objective function. It is proved that we can convert an IVLFP to an optimization problem with interval valued objective function which its bounds are linear fractional functions. Also there is a discussion for the solutions of this kind of optimization problem.
文摘Most of the current methods for solving linear fractional programming (LFP) problems depend on the simplex type method. In this paper, we present a new approach for solving linear fractional programming problem in which the objective function is a linear fractional function, while constraint functions are in the form of linear inequalities. This approach does not depend on the simplex type method. Here first we transform this LFP problem into linear programming (LP) problem and hence solve this problem algebraically using the concept of duality. Two simple examples to illustrate our algorithm are given. And also we compare this approach with other available methods for solving LFP problems.