General topology of the universe is described. It is concluded that topology of the present universe is greater or stronger than the topology of the universe in the past and topology of the future universe will be str...General topology of the universe is described. It is concluded that topology of the present universe is greater or stronger than the topology of the universe in the past and topology of the future universe will be stronger or greater than the present topology of the universe. Consequently, the universe remains unbounded. The general topological approach comprises of powerful techniques that could prove to be useful to prescribe mathematical constraints on the global character of the universe as well as on the manifold of space-time.展开更多
In civil engineering, the nonlinear dynamic instability of structures occurs at a bifurcation point or a limit point. The instability at a bifurcation point can be analyzed with the theory of nonlinear dynamics, and t...In civil engineering, the nonlinear dynamic instability of structures occurs at a bifurcation point or a limit point. The instability at a bifurcation point can be analyzed with the theory of nonlinear dynamics, and that at a limit point can be discussed with the theory of elastoplasticity. In this paper, the nonlinear dynamic instability of structures was treated with mathematical and mechanical theories. The research methods for the problems of structural nonlinear dynamic stability were discussed first, and then the criterion of stability or instability of structures, the method to obtain the bifurcation point and the limit point, and the formulae of the directions of the branch solutions at a bifurcation point were elucidated. These methods can be applied to the problems of nonlinear dynamic instability of structures such as reticulated shells, space grid structures, and so on. Key words nonlinear dynamic instability - engineering structures - non-stationary nonlinear system - bifurcation point - instability at a bifurcation point - limit point MSC 2000 74K25 Project supported by the Science Foundation of Shanghai Municipal Commission of Education (Grant No. 02AK04), the Science Foundation of Shanghai Municipal Commission of Science and Technology (Grant No. 02ZA14034)展开更多
Arc-length-type and energy-type methods are two main strategies used in structural nonlinear tracing analysis, but the former is widely used due to the explicitness and clarity in conception, as well as the convenienc...Arc-length-type and energy-type methods are two main strategies used in structural nonlinear tracing analysis, but the former is widely used due to the explicitness and clarity in conception, as well as the convenience and reliability in calculation. It is very important to trace the complete load-deflection path in order to know comprehensively the characteristics of structures subjected to loads. Unfortunately, the nonlinear analysis techniques are only workable for tracing the limit-point-type equilibrium path. For the bifurcation-point-type path, most of them cannot secure a satisfactory result. In this paper, main arc-length-type methods are reviewed and compared, and the possible reasons of failures in tracing analysis are briefly discussed. Some improvements are proposed, a displacement perturbation method and a force perturbation method are presented for tracing the bifurcation-point-type paths. Finally, two examples are analyzed to verify the ideas, and some conclusions are drawn with respect to the arc-length-type methods.展开更多
文摘General topology of the universe is described. It is concluded that topology of the present universe is greater or stronger than the topology of the universe in the past and topology of the future universe will be stronger or greater than the present topology of the universe. Consequently, the universe remains unbounded. The general topological approach comprises of powerful techniques that could prove to be useful to prescribe mathematical constraints on the global character of the universe as well as on the manifold of space-time.
文摘In civil engineering, the nonlinear dynamic instability of structures occurs at a bifurcation point or a limit point. The instability at a bifurcation point can be analyzed with the theory of nonlinear dynamics, and that at a limit point can be discussed with the theory of elastoplasticity. In this paper, the nonlinear dynamic instability of structures was treated with mathematical and mechanical theories. The research methods for the problems of structural nonlinear dynamic stability were discussed first, and then the criterion of stability or instability of structures, the method to obtain the bifurcation point and the limit point, and the formulae of the directions of the branch solutions at a bifurcation point were elucidated. These methods can be applied to the problems of nonlinear dynamic instability of structures such as reticulated shells, space grid structures, and so on. Key words nonlinear dynamic instability - engineering structures - non-stationary nonlinear system - bifurcation point - instability at a bifurcation point - limit point MSC 2000 74K25 Project supported by the Science Foundation of Shanghai Municipal Commission of Education (Grant No. 02AK04), the Science Foundation of Shanghai Municipal Commission of Science and Technology (Grant No. 02ZA14034)
基金The project supported by the Special Research Fund for Doctor Program of Universities (9424702)
文摘Arc-length-type and energy-type methods are two main strategies used in structural nonlinear tracing analysis, but the former is widely used due to the explicitness and clarity in conception, as well as the convenience and reliability in calculation. It is very important to trace the complete load-deflection path in order to know comprehensively the characteristics of structures subjected to loads. Unfortunately, the nonlinear analysis techniques are only workable for tracing the limit-point-type equilibrium path. For the bifurcation-point-type path, most of them cannot secure a satisfactory result. In this paper, main arc-length-type methods are reviewed and compared, and the possible reasons of failures in tracing analysis are briefly discussed. Some improvements are proposed, a displacement perturbation method and a force perturbation method are presented for tracing the bifurcation-point-type paths. Finally, two examples are analyzed to verify the ideas, and some conclusions are drawn with respect to the arc-length-type methods.