期刊文献+
共找到100篇文章
< 1 2 5 >
每页显示 20 50 100
基于CNN-Bi LSTM的短期电力负荷预测 被引量:73
1
作者 朱凌建 荀子涵 +3 位作者 王裕鑫 崔强 陈文义 娄俊超 《电网技术》 EI CSCD 北大核心 2021年第11期4532-4539,共8页
短期电力负荷预测能准确评估地区整体电力负荷变化情况,为电力系统运行决策提供准确参考。电力负荷参数受多维因素影响,为充分挖掘电力负荷数据中的时序特征,提升电力负荷预测精度,该文提出一种基于特征筛选的卷积神经网络—双向长短期... 短期电力负荷预测能准确评估地区整体电力负荷变化情况,为电力系统运行决策提供准确参考。电力负荷参数受多维因素影响,为充分挖掘电力负荷数据中的时序特征,提升电力负荷预测精度,该文提出一种基于特征筛选的卷积神经网络—双向长短期记忆网络组合模型的短期电力负荷预测方法。以真实电力负荷数据作为数据集,通过对多维输入参数的优化筛选,选取高相关性特征向量作为输入,构建预测模型。通过与添加注意力机制的组合模型对比验证了输入参数优化分析的可行性和优越性。最后利用实际算例将该方法与利用自动化模型构建工具构建的梯度增强基线模型及常用预测模型相比,该方法构建的组合模型可以提升多维电力负荷数据的短期预测精度。 展开更多
关键词 短期电力负荷预测 卷积神经网络 双向长短时记忆神经网络 特征筛选 梯度增强基线模型
下载PDF
集成模糊层级划分的LightGBM食品安全风险预警模型:以肉制品为例 被引量:16
2
作者 高亚男 王文倩 王建新 《食品科学》 EI CAS CSCD 北大核心 2021年第1期197-207,共11页
在食品安全风险管理中,风险点精确定位能从源头解决食品安全问题,对食品安全风险评估和预警具有关键意义。近年来,食品行业信息化的发展使得原料生产、加工、仓储运输、抽检等环节积累了大量数据,并亟待开发利用。而现存的风险预警方法... 在食品安全风险管理中,风险点精确定位能从源头解决食品安全问题,对食品安全风险评估和预警具有关键意义。近年来,食品行业信息化的发展使得原料生产、加工、仓储运输、抽检等环节积累了大量数据,并亟待开发利用。而现存的风险预警方法存在风险细粒度难以衡量、数据利用率低、人工成本高等问题。因此,本研究首先对食品安全相关数据进行归纳分类并描述数据特征,作为后续处理的基础。为了充分利用食品安全数据海量、高维的特点,本研究使用先验风险概率与模糊层级划分相结合的方法对不同类型的属性计算模糊综合风险值,作为预测模型标签值。由LightGBM和专家干预策略结合产生的预测模型可对风险值进行预测和校正。基于此,依托肉制品和水产品数据的实验详细阐述了方法的使用流程,并进一步验证了方法优越性和规律合理性。研究中产出的风险分析结果,包括风险值和属性重要程度分布等可以为决策者提供有价值的决策依据。 展开更多
关键词 食品安全 风险预警 模糊层级划分 梯度提升树 lightGBM
下载PDF
考虑机组动态特性的超短期风电功率预测及不确定性量化分析 被引量:16
3
作者 黄慧 贾嵘 +1 位作者 师小雨 王颂凯 《电力系统保护与控制》 CSCD 北大核心 2021年第8期109-117,共9页
针对数据驱动的风电功率预测模型中,高维异质大数据特征信息挖掘问题,提出考虑机组动态特性的轻量梯度上升学习机(LGBM)预测模型和区间估计的不确定性量化方法。首先,设置发电机转速、叶片角度为机组动态特性指标,构建LGBM超短期风电功... 针对数据驱动的风电功率预测模型中,高维异质大数据特征信息挖掘问题,提出考虑机组动态特性的轻量梯度上升学习机(LGBM)预测模型和区间估计的不确定性量化方法。首先,设置发电机转速、叶片角度为机组动态特性指标,构建LGBM超短期风电功率预测模型。其次,采用模糊C均值聚类对历史预测出力和预测误差样本进行区间划分;考虑预测出力和预测误差条件相依性,采用非参数估计拟合误差概率分布,并以置信区间对风电功率预测区间进行了离散化表征。最后,选取实际风电场数据进行验证。结果表明:考虑机组动态特性的LGBM预测模型的精度和计算效率显著提升;基于区间估计的不确定性量化方法解耦拟合过程与预测方法,可靠性高,灵活性强。 展开更多
关键词 特征选择 轻量梯度上升学习机 风电功率预测 区间估计
下载PDF
基于LightGBM-SSA-ELM的新疆羊舍CO_(2)浓度预测 被引量:13
4
作者 尹航 吕佳威 +3 位作者 陈耀聪 岑红蕾 李景彬 刘双印 《农业机械学报》 EI CAS CSCD 北大核心 2022年第1期261-270,共10页
为减少肉羊集约化养殖过程中因环境恶化产生的应激反应,精准调控CO_(2)质量浓度,提出了基于分布式梯度提升框架(LightGBM)、麻雀搜索算法(SSA)融合极限学习机(ELM)的CO_(2)质量浓度预测模型。首先利用LightGBM筛选出与CO_(2)质量浓度相... 为减少肉羊集约化养殖过程中因环境恶化产生的应激反应,精准调控CO_(2)质量浓度,提出了基于分布式梯度提升框架(LightGBM)、麻雀搜索算法(SSA)融合极限学习机(ELM)的CO_(2)质量浓度预测模型。首先利用LightGBM筛选出与CO_(2)质量浓度相关的重要特征,降低预测模型的输入维度;然后选择Sigmoid为激活函数,使用具有较强非线性处理能力的单隐含层ELM神经网络算法构建CO_(2)质量浓度预测模型;最后通过麻雀智能优化算法对ELM模型中所需要的超参数进行优化,并将优化后模型应用于新疆玛纳斯集约化肉羊养殖基地。试验结果表明,该模型预测均方根误差(RMSE)、平均绝对误差(MAE)和决定系数(R^(2))分别为0.0213 mg/L、0.0136 mg/L和0.9886,综合性能指标优于支持向量回归(SVR)、反向传播神经网络(BPNN)、长短记忆神经网络(LSTM)、门限循环单元(GRU)和LightGBM等;CO_(2)质量浓度预测曲线贴近真实曲线,具有良好的预测效果,能有效满足集约化肉羊养殖过程中CO_(2)质量浓度精准预测及调控要求。 展开更多
关键词 羊舍 集约化养殖 CO_(2)质量浓度预测 极限学习机 麻雀搜索算法 分布式梯度提升框架
下载PDF
ICU患者急性肾损伤发生风险的LightGBM预测模型 被引量:13
5
作者 张渊 冯聪 +3 位作者 李开源 张政波 曹德森 黎檀实 《解放军医学院学报》 CAS 2019年第4期316-320,共5页
目的基于机器学习模型LightGBM构建ICU患者发生急性肾损伤(acute kidney injury,AKI)的预测模型,为临床医护人员提供辅助决策支持。方法采用公开的大型ICU数据库重症监护医学信息数据库(MIMIC-Ⅲ)作为数据集,提取1166例患者,其中男性513... 目的基于机器学习模型LightGBM构建ICU患者发生急性肾损伤(acute kidney injury,AKI)的预测模型,为临床医护人员提供辅助决策支持。方法采用公开的大型ICU数据库重症监护医学信息数据库(MIMIC-Ⅲ)作为数据集,提取1166例患者,其中男性513例(44.00%),中位年龄70.93岁,75.8%(884例)的患者发展为AKI。以患者入ICU时的生理生化指标为预测变量,预测患者24h后是否发展为AKI。采用LightGBM构建预测模型,并与logistic回归及随机森林模型进行对比,采用五折交叉验证评价模型性能。结果结果显示,LightGBM模型对AKI预测的准确率为0.89,AUC为0.92;logistic回归模型和随机森林模型的AUC分别为0.75和0.89,准确率为0.84和0.86。结论LightGBM在AKI预测模型中表现最优,采用患者入ICU时的生理生化指标,预测模型准确率和AUC可达0.89和0.92。 展开更多
关键词 医疗大数据 MIMIC-Ⅲ数据库 急性肾损伤 lightGBM 预测模型
下载PDF
基于TVF-EMD、GRA和LightGBM的日径流预测组合模型 被引量:7
6
作者 王秀杰 乔鸿飞 +2 位作者 曾勇红 田福昌 张帅 《水资源保护》 EI CAS CSCD 北大核心 2023年第5期135-142,151,共9页
针对径流过程的非线性和非平稳性特点及预报精度低的问题,提出了结合时变滤波器的经验模态分解(TVF-EMD)、灰色关联度分析(GRA)和轻量级梯度提升机(LightGBM)的日径流预测组合模型。以黄河利津站和珠江高要站实测日径流序列为例,建立TVF... 针对径流过程的非线性和非平稳性特点及预报精度低的问题,提出了结合时变滤波器的经验模态分解(TVF-EMD)、灰色关联度分析(GRA)和轻量级梯度提升机(LightGBM)的日径流预测组合模型。以黄河利津站和珠江高要站实测日径流序列为例,建立TVF-EMD-GRA-LightGBM(TGL)组合模型,并将其预测结果与多种单一或组合预测模型的预测结果进行了对比分析。结果表明:TGL组合模型高效且预测性能最佳,利津站和高要站日径流预测结果的纳什效率系数分别为0.949和0.966,相关系数分别为0.974和0.984,峰值流量预测误差分别小于0.078和0.073。TGL组合模型具有预测精度高、运行效率快、适用性强等优势,可用于日径流预测。 展开更多
关键词 日径流预测 轻量级梯度提升机 TVF-EMD 灰色关联度分析
下载PDF
基于轻量级梯度提升机和生成对抗网络的含风电电力系统频率稳定评估 被引量:8
7
作者 赵冬梅 郑亚锐 +1 位作者 谢家康 郭育村 《电网技术》 EI CSCD 北大核心 2022年第8期3181-3190,共10页
针对目前电力系统频率稳定评估研究未考虑新能源和系统拓扑变化的问题,提出一种考虑风速特征的基于轻量级梯度提升机(light gradient boosting machine,lightGBM)和生成对抗网络(generative adversarial network,GAN)的含风电电力系统... 针对目前电力系统频率稳定评估研究未考虑新能源和系统拓扑变化的问题,提出一种考虑风速特征的基于轻量级梯度提升机(light gradient boosting machine,lightGBM)和生成对抗网络(generative adversarial network,GAN)的含风电电力系统频率稳定评估方法。首先分析风电对频率稳定的影响,其次采用lightGBM对频率变化率,暂态频率极值和准稳态频率3个指标建立预测模型,引入注意力机制对输入特征排序降维,通过预测指标综合判断系统频率稳定性。系统拓扑发生改变时,采用GAN产生大量相似样本对模型进行更新。在含风电新英格兰10机39节点系统和含风电IEEE118节点系统上的仿真结果表明,所提方法比传统机器学习方法精度更高,速度更快,泛化性能更好。且考虑风速特征后不同算法的模型精度均大大提高。 展开更多
关键词 风电 电力系统 频率稳定 轻量级梯度提升机 生成对抗网络
下载PDF
基于AC-GAN数据重构的风电机组主轴承温度监测方法 被引量:8
8
作者 尹诗 侯国莲 +1 位作者 胡晓东 周继威 《智能系统学报》 CSCD 北大核心 2021年第6期1106-1116,共11页
为更好地识别风电机组主轴承运行状态,提出了一种基于辅助分类生成对抗网络(auxiliary classifier generative adversarial networks, AC-GAN)的数据重构算法对风电机组主轴承温度进行监测。首先,利用采集与监视控制系统(supervisory co... 为更好地识别风电机组主轴承运行状态,提出了一种基于辅助分类生成对抗网络(auxiliary classifier generative adversarial networks, AC-GAN)的数据重构算法对风电机组主轴承温度进行监测。首先,利用采集与监视控制系统(supervisory control and data acquisition, SCADA)时序数据建立基于轻型梯度增强学习器(light gradient boosting machine, LightGBM)的主轴承温度预测模型,并计算其残差特征。其次,利用统计过程控制(statistical process control, SPC)方法对主轴承温度异常残差在控制线范围内进行筛选,并利用AC-GAN算法对残差进行重构。最后,分别提取主轴承温度正常和异常的残差特征,建立基于自然梯度提升(natural gradient boosting, NGBoost)的主轴承状态监测模型。实验结果表明,该方法对主轴承运行状态判断准确度高达87.5%,能够有效地监测风电机组轴承类运行状态。 展开更多
关键词 轻型梯度增强学习器 辅助分类生成对抗网络 自然梯度提升 风电机组 主轴承 状态监测 数据重构 温度残差
下载PDF
面向多价值链的汽车配件需求预测模型 被引量:8
9
作者 任春华 孙林夫 韩敏 《计算机集成制造系统》 EI CSCD 北大核心 2021年第10期2786-2800,共15页
基于第三方零部件多产业链业务协同云服务平台中汽车配件的销售现状,配件代理商没有充分考虑跨链销售、跨链调拨、多链销售等配件需求。为提高配件需求预测的准确率,首先提出一种优势矩阵(AM)结合轻梯度提升机(LightGBM)、门控循环神经... 基于第三方零部件多产业链业务协同云服务平台中汽车配件的销售现状,配件代理商没有充分考虑跨链销售、跨链调拨、多链销售等配件需求。为提高配件需求预测的准确率,首先提出一种优势矩阵(AM)结合轻梯度提升机(LightGBM)、门控循环神经网络(GRU)的组合预测模型(LightGBM_GRU_AM),该模型通过引入优势矩阵获取单个模型的最优权重系数,通过加权后的组合模型进行需求预测。考虑到组合模型中某时刻子模型的预测效果优于组合模型,为进一步提高预测的准确率,设计了一种基于LightGBM、GRU和LightGBM_GRU_AM的半组合预测模型,该模型采用子模型优选策略,在训练过程中利用最小绝对误差建立子模型分类标签,以特征提取和分类回归树建立子模型选取规则,根据数据特征采用不同的子模型进行预测,集成不同时刻的预测值形成最终的需求预测。最后集成第三方云平台中多链配件销售和配件相关售后服务数据进行算例分析,相比其他7种预测模型,提出的2种预测模型不但能有效降低预测误差,而且半组合预测模型更有优势,同时也为配件代理商提供采购决策支持。 展开更多
关键词 汽车配件 多价值链 轻梯度提升机 门控循环神经网络 优势矩阵 组合预测模型 半组合预测模型 子模型优选 需求预测
下载PDF
VMD-Stacking集成学习的多特征变量短期负荷预测模型 被引量:1
10
作者 王士彬 何鑫 +2 位作者 余成波 张未 陈佳 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第2期218-224,共7页
针对当前短期电力负荷预测结果准确度不够高的问题,提出一种由变分模态分解(variational modal decomposition, VMD)和Stacking集成学习框架组合的多特征变量短期负荷预测模型。在预测前使用VMD算法将负荷数据分解,然后加入对模型重要... 针对当前短期电力负荷预测结果准确度不够高的问题,提出一种由变分模态分解(variational modal decomposition, VMD)和Stacking集成学习框架组合的多特征变量短期负荷预测模型。在预测前使用VMD算法将负荷数据分解,然后加入对模型重要性较高的特征变量,再建立由轻量级梯度提升机(light gradient boosting machine, LightGBM)与极限梯度提升机(extreme gradient boosting, XGBoost)融合的Stacking集成学习预测模型,并比较不同天气情况下对预测模型准确度的影响。经实际算例对比验证表明:多特征的VMD-Stacking集成学习预测模型的误差较小。采用VMD算法分解历史负荷序列,分解后子模态分量的周期性体现了出来,让模型预测波动性较大的负荷时更容易;温度、天气、农历和节假日情况等影响负荷变化的关键因素有被考虑到,模型的准确度得以提高;Stacking集成学习模型对各算法取长补短,泛化能力增强,预测的准确度高于单一模型。 展开更多
关键词 短期电力负荷预测 变分模态分解 Stacking集成学习 多特征变量 轻量级梯度提升机 极限梯度提升机
下载PDF
A Hybrid Ensemble Learning Approach Utilizing Light Gradient Boosting Machine and Category Boosting Model for Lifestyle-Based Prediction of Type-II Diabetes Mellitus
11
作者 Mahadi Nagassou Ronald Waweru Mwangi Euna Nyarige 《Journal of Data Analysis and Information Processing》 2023年第4期480-511,共32页
Addressing classification and prediction challenges, tree ensemble models have gained significant importance. Boosting ensemble techniques are commonly employed for forecasting Type-II diabetes mellitus. Light Gradien... Addressing classification and prediction challenges, tree ensemble models have gained significant importance. Boosting ensemble techniques are commonly employed for forecasting Type-II diabetes mellitus. Light Gradient Boosting Machine (LightGBM) is a widely used algorithm known for its leaf growth strategy, loss reduction, and enhanced training precision. However, LightGBM is prone to overfitting. In contrast, CatBoost utilizes balanced base predictors known as decision tables, which mitigate overfitting risks and significantly improve testing time efficiency. CatBoost’s algorithm structure counteracts gradient boosting biases and incorporates an overfitting detector to stop training early. This study focuses on developing a hybrid model that combines LightGBM and CatBoost to minimize overfitting and improve accuracy by reducing variance. For the purpose of finding the best hyperparameters to use with the underlying learners, the Bayesian hyperparameter optimization method is used. By fine-tuning the regularization parameter values, the hybrid model effectively reduces variance (overfitting). Comparative evaluation against LightGBM, CatBoost, XGBoost, Decision Tree, Random Forest, AdaBoost, and GBM algorithms demonstrates that the hybrid model has the best F1-score (99.37%), recall (99.25%), and accuracy (99.37%). Consequently, the proposed framework holds promise for early diabetes prediction in the healthcare industry and exhibits potential applicability to other datasets sharing similarities with diabetes. 展开更多
关键词 boosting Ensemble Learning Category boosting light gradient boosting machine
下载PDF
基于LightGBM的智能可穿戴设备用户行为预测
12
作者 肖新元 《移动信息》 2024年第2期200-202,共3页
智能可穿戴设备产生的大量数据是人类宝贵的数字资源。使用开放数据集和主流数据分析工具,如可进行快速模型开发的PyCaret模块,有助于人们进行数据挖掘工作,且不被细节所困扰。作为Kaggle竞赛爱好者的常用工具,LightGBM分类器对用户行... 智能可穿戴设备产生的大量数据是人类宝贵的数字资源。使用开放数据集和主流数据分析工具,如可进行快速模型开发的PyCaret模块,有助于人们进行数据挖掘工作,且不被细节所困扰。作为Kaggle竞赛爱好者的常用工具,LightGBM分类器对用户行为的预测表现优异,对此文中的研究结果也得到验证。 展开更多
关键词 GBDT lightGBM PyCaret 机器学习
下载PDF
面向低压配电网智能电表误差监测的LightGBM-EM-EC多变量缺失数据高效重建 被引量:6
13
作者 李富盛 陈伟松 +4 位作者 钱斌 郭斌 肖勇 周密 罗奕 《中国电机工程学报》 EI CSCD 北大核心 2022年第S01期95-105,共11页
低压配电网智能电表误差监测是在不使用外部标准仪器的情况下对现场电表误差进行评估,有助于合理延长电表的使用年限,降低电网成本。然而,智能电表采集数据的缺失会降低远程误差监测的准确性。该文分析低压配电网智能电表数据缺失模式,... 低压配电网智能电表误差监测是在不使用外部标准仪器的情况下对现场电表误差进行评估,有助于合理延长电表的使用年限,降低电网成本。然而,智能电表采集数据的缺失会降低远程误差监测的准确性。该文分析低压配电网智能电表数据缺失模式,研究数据缺失对误差监测模型的影响,提出一种面向低压配电网的智能电表误差监测数据重建方法。该方法构建单变量轻量级梯度提升机(light gradient boosting machine,Light GBM)重建器,建立基于期望最大化(expectation maximum,EM)算法的多变量缺失重建模型,根据能量守恒(energy conservation,EC)约束对重建数据进行二次修正。仿真结果表明,所提方法能够有效甄别数据集重要特征,明显降低时间复杂度,实现多个电能表数据同时缺失条件下的高精度重建,提高电表误差远程监测的准确性。 展开更多
关键词 低压配电网 智能电表 误差监测 缺失数据重建 轻量级梯度提升机 期望最大化
下载PDF
一种基于TCN-LGBM的航空发动机气路故障诊断方法 被引量:1
14
作者 吕卫民 孙晨峰 +2 位作者 任立坤 赵杰 李永强 《兵工学报》 EI CAS CSCD 北大核心 2024年第1期253-263,共11页
长时间工作在高温高压、强振动等恶劣气路环境下的航空发动机经常面临部件疲劳、腐蚀和性能退化的问题,且其故障诊断时序逻辑性不强、故障参数耦合较深等特点十分明显,为此提出一种基于时间卷积神经网络(Temporal Convolutional Network... 长时间工作在高温高压、强振动等恶劣气路环境下的航空发动机经常面临部件疲劳、腐蚀和性能退化的问题,且其故障诊断时序逻辑性不强、故障参数耦合较深等特点十分明显,为此提出一种基于时间卷积神经网络(Temporal Convolutional Network,TCN)和轻量级梯度提升机(Light Gradient Boosting Machine,LGBM)的航空发动机气路故障诊断方法。故障诊断分为故障特征提取和分类诊断两个过程:引入TCN框架,在保证故障数据训练时序逻辑的基础上,实现对远层历史信息和当前层信息的特征融合构建,融合通道注意力机制增强了高质量特征的权重;基于LGBM模型实现对特征的快速分类,利用贝叶斯方法实现对模型超参数的快速优化。以基于PROOSIS软件建模的某军用小涵道比涡扇发动机故障仿真数据为例,对6种故障模式进行诊断识别。仿真结果表明了所提方法的有效性;通过与其他模型对比体现了该方法的优越性。 展开更多
关键词 航空发动机 故障诊断 时间卷积神经网络 轻量级梯度提升机 注意力机制
下载PDF
分布式光伏功率数据的IMOWOA和LightGBM混合虚拟采集方法 被引量:1
15
作者 葛磊蛟 杜天硕 孙冰 《中国电机工程学报》 EI CSCD 北大核心 2024年第3期1035-1046,I0015,共13页
点多面广、分散无序的分布式光伏电站规模化接入电网是我国新型电力系统向低碳演进的重要路径之一。低成本、高效率的分布式光伏电站数据获取是光伏电站开展精细化管理、精益化运维的重要基础。为此,该文提出一种基于改进多目标鲸鱼优... 点多面广、分散无序的分布式光伏电站规模化接入电网是我国新型电力系统向低碳演进的重要路径之一。低成本、高效率的分布式光伏电站数据获取是光伏电站开展精细化管理、精益化运维的重要基础。为此,该文提出一种基于改进多目标鲸鱼优化算法(improved multi-objective whale optimization algorithm,IMOWOA)与轻量梯度提升机(light gradient boosting machine,LightGBM)的分布式光伏数据虚拟采集方案。针对虚拟采集区域划分难题,该方案首先在网格化区域划分的基础上提出一种自编码器相似性分析方法,获取满足相似性需求的光伏电站集;为解决参考电站集选择难题,提出一种改进的多目标鲸鱼优化算法,提高算法的全局搜索能力,基于区域内光伏电站的历史功率数据,同时对参考电站子集与LightGBM超参数进行优化,从而实现仅选取部分分布式光伏电站安装完备的数据采集装置,完成区域范围内所有电站功率数据的高精度虚拟采集。最后,以我国江苏省某区域范围内的29个分布式光伏电站为算例进行分析,验证提出的方法的可行性和有效性。 展开更多
关键词 分布式光伏 虚拟采集 鲸鱼优化算法 轻量梯度提升机 多目标优化
下载PDF
基于Stacking集成学习的恶意攻击检测方法
16
作者 左胜勇 冯立超 +1 位作者 陈学斌 郭宸良 《华北理工大学学报(自然科学版)》 CAS 2024年第3期104-111,共8页
伴随着互联网的快速发展,网络安全问题越发严峻,尤其是网络攻击变得更加频繁,对其检测防控迫在眉睫。该研究主要提出了一种新的LightGBM-XGboost-Random forest的Stacking集成学习模型;新的特征提取方法也被相应提出,通过探索性数据分... 伴随着互联网的快速发展,网络安全问题越发严峻,尤其是网络攻击变得更加频繁,对其检测防控迫在眉睫。该研究主要提出了一种新的LightGBM-XGboost-Random forest的Stacking集成学习模型;新的特征提取方法也被相应提出,通过探索性数据分析对特征集进行重要特征提取,较传统方法更快速、方便;相比于单一模型与传统模型,该Stacking集成学习模型的检测精确度更高,对LUFlows数据集进行实践训练,该集成模型检测精确度可达到97.0%,明显高于单一使用LightGBM模型、XGboost模型、Random forest模型的精确度;同时引入NSL-KDD数据集对该Stacking集成学习模型进行泛化能力测试,与最新的研究进行比对,LXR模型测得F1-score为0.8709,优于多数模型结果。表明该集成学习模型能够提供一种更为精确有效且泛化能力强的网络攻击检测方法,以更好地维护网络空间安全。 展开更多
关键词 轻量化梯度提升 极端梯度提升 随机森林
下载PDF
结合梯度提升树算法与可解释机器学习模型SHAP的抑郁症影响因素研究
17
作者 聂卉 吴晓燕 《数据分析与知识发现》 EI CSCD 北大核心 2024年第3期41-52,共12页
【目的】本研究旨在探讨构建抑郁严重度预测模型及其解释性问题,通过分析互联网用户生成的内容,进一步发展抑郁症风险预测研究,从而提高抑郁症自动检测模型的可靠性和实用性。【方法】通过收集“好大夫在线”平台上的抑郁症医疗咨询文... 【目的】本研究旨在探讨构建抑郁严重度预测模型及其解释性问题,通过分析互联网用户生成的内容,进一步发展抑郁症风险预测研究,从而提高抑郁症自动检测模型的可靠性和实用性。【方法】通过收集“好大夫在线”平台上的抑郁症医疗咨询文本记录,构建了一个语料库。利用心理学词典,从中提取了患者的心理特征,并采用梯度提升树算法预测患者的病情,同时引入可解释机器学习方法SHAP解读模型,借助SHAP独特的可视化图表剖析患者年龄、性别、认知、情感、感知、社会家庭及个人得失与抑郁症发生之间的复杂关系。【结果】抑郁症患者心理状态能反馈患者病况,利用从患者问诊记录中提取的心理特征能够有效检测重度抑郁,准确率达到86%。可解释机器学习模型SHAP解释了模型的预测结果,揭示出患者各层面心理特征对抑郁症发生产生的多重效应。【局限】受语料集所限,仅利用单次问诊记录对抑郁程度做预测;而模型特征基于心理学词典,更多与抑郁症发生风险有关的要素可纳入建模考虑中。【结论】影响抑郁症产生及发展的因素复杂。个体差异致使各项特征对于疾病预测产生不同效应。构建抑郁症的自动诊断模型,不仅要关注模型的精准度,更需增强对模型预测的理解。 展开更多
关键词 抑郁症预测 在线用户生成内容 可解释机器学习 梯度提升树算法
原文传递
计及工况预测误差的主动配电网日前无功优化调度策略
18
作者 张旭 刘伯文 王怡 《华北电力大学学报(自然科学版)》 CAS 北大核心 2024年第2期31-40,共10页
为解决工况预测误差较大时,日前无功优化调度方案优化效果不佳的问题,提出了计及工况预测误差的主动配电网日前无功优化调度策略。首先,使用轻量级梯度提升机算法建立日前工况功率预测模型;其次,考虑大规模高比例分布式电源接入主动配电... 为解决工况预测误差较大时,日前无功优化调度方案优化效果不佳的问题,提出了计及工况预测误差的主动配电网日前无功优化调度策略。首先,使用轻量级梯度提升机算法建立日前工况功率预测模型;其次,考虑大规模高比例分布式电源接入主动配电网,以调度时段内所有时间断面的多目标加权累加和为目标函数建立日前无功优化调度模型;最后,设计了一种变寻优粒子空间的改进引力搜索算法对日前无功优化调度模型进行求解,该算法根据历史工况预测误差评价指标调整寻优粒子空间各维度的上下限矩阵,从而抑制了当无功区域内工况预测误差较大时可控设备调度异常的缺陷。最后采用拓展的IEEE 33节点系统算例进行有效性验证。 展开更多
关键词 主动配电网 日前无功优化调度 工况预测 分布式电源 轻量级梯度提升机 改进引力搜索算法
下载PDF
利用CARS算法联合协变量估算盐碱农田土壤水分和有机质含量
19
作者 丁启东 王怡婧 +2 位作者 张俊华 贾科利 黄华雨 《应用生态学报》 CAS CSCD 北大核心 2024年第5期1321-1330,共10页
快速获取土壤含水率(SMC)和土壤有机质(SOM)含量对于盐碱农田土壤的改良利用至关重要。本研究基于河套平原农田土壤野外高光谱反射率和土壤属性实测数据,对原始光谱反射率(Ref)进行标准正态变量(SNV)转换后,采用竞争性自适应重加权采样... 快速获取土壤含水率(SMC)和土壤有机质(SOM)含量对于盐碱农田土壤的改良利用至关重要。本研究基于河套平原农田土壤野外高光谱反射率和土壤属性实测数据,对原始光谱反射率(Ref)进行标准正态变量(SNV)转换后,采用竞争性自适应重加权采样算法(CARS)筛选敏感波段,然后分别以Ref、Ref-SNV和Ref-SNV+土壤协变量(SC)及数字高程模型(DEM)作为建模输入变量的策略Ⅰ、Ⅱ和Ⅲ,基于随机森林(RF)和轻梯度提升机(LightGBM)建立SMC和SOM估算模型,并对模型精度进行验证和对比。结果表明:经CARS筛选后,SMC和SOM敏感波段压缩至全波段的3.3%以下,有效优化波段选择,减少了冗余光谱信息。与LightGBM模型相比,RF模型在SMC和SOM估算中精度更高,输入变量策略Ⅲ优于Ⅱ和Ⅰ,辅助变量的引入有效提升了模型的估算能力。综合分析,基于策略Ⅲ-RF的SMC估算模型验证决定系数(R_(p)~2)、均方根误差(RMSE)和相对分析误差(RPD)分别为0.63、3.16和2.01,基于策略Ⅲ-RF的SOM估算模型R_(p)~2、RMSE和RPD分别为0.93、1.15和3.52,策略Ⅲ-RF模型是估算土壤水分和土壤有机质的有效方法。研究结论可为盐碱农田土壤水分和有机质含量快速估算提供新方法。 展开更多
关键词 高光谱 遥感 土壤协变量 变量重要性投影 随机森林 轻梯度提升机 反距离权重法
原文传递
基于机器学习的带被动阻尼直流微电网系统的稳定性检测
20
作者 刘笑 杨建 +2 位作者 李力 董密 宋冬然 《电工技术学报》 EI CSCD 北大核心 2024年第8期2281-2293,2324,共14页
直流微电网中恒功率负荷(CPL)具有负阻尼特性,该特性会降低系统稳定性。为此,通过在滤波器上添加被动阻尼来增强直流微电网系统的稳定性,并提出一种基于机器学习的方法来检测带被动阻尼直流微电网系统的稳定性。首先,建立带被动阻尼直... 直流微电网中恒功率负荷(CPL)具有负阻尼特性,该特性会降低系统稳定性。为此,通过在滤波器上添加被动阻尼来增强直流微电网系统的稳定性,并提出一种基于机器学习的方法来检测带被动阻尼直流微电网系统的稳定性。首先,建立带被动阻尼直流微电网系统的小信号模型,以此来确定影响系统稳定性的参数。其次,以所选系统参数为变量建立仿真场景,以此来获取用于机器学习算法训练的数据集。再次,提出一种基于轻量型梯度提升机(LGBM)的直流微电网稳定性检测模型,并采用沙普利加解释法(SHAP)分析所选参数对LGBM预测结果和直流微电网系统稳定性的影响。最后,通过仿真和硬件在环实验验证所提方法的有效性和优越性。 展开更多
关键词 直流微电网 稳定性检测 被动阻尼 轻量型梯度提升机 沙普利加解释
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部