本文将Dannan F M.和Elaydi S.[1,2]提出的常微分方程(ODE)的一致lipschitz稳定性概念拓广到滞后型泛函微分方程(RFDE),对一般线性RGDE,我们证明了一致lipschitz稳定与一致稳定是等价的;对一般非线性RFDE,利用liapunov泛函方法,建立了一...本文将Dannan F M.和Elaydi S.[1,2]提出的常微分方程(ODE)的一致lipschitz稳定性概念拓广到滞后型泛函微分方程(RFDE),对一般线性RGDE,我们证明了一致lipschitz稳定与一致稳定是等价的;对一般非线性RFDE,利用liapunov泛函方法,建立了一致lipschitz稳定性必要或充分条件。展开更多
The problem of state feedback stabilization of control systems is tackled in this paper.The stabilizability of the plane control systems with critical spectrum is considered,By using therecently developed center manif...The problem of state feedback stabilization of control systems is tackled in this paper.The stabilizability of the plane control systems with critical spectrum is considered,By using therecently developed center manifold method combined with Liapunov second method,it is shownthat in all critical cases the above mentioned systems are state feedback stabilizable.展开更多
文摘本文将Dannan F M.和Elaydi S.[1,2]提出的常微分方程(ODE)的一致lipschitz稳定性概念拓广到滞后型泛函微分方程(RFDE),对一般线性RGDE,我们证明了一致lipschitz稳定与一致稳定是等价的;对一般非线性RFDE,利用liapunov泛函方法,建立了一致lipschitz稳定性必要或充分条件。
文摘The problem of state feedback stabilization of control systems is tackled in this paper.The stabilizability of the plane control systems with critical spectrum is considered,By using therecently developed center manifold method combined with Liapunov second method,it is shownthat in all critical cases the above mentioned systems are state feedback stabilizable.