Li_(3)VO_(4) is a promising electrode material for next-generation lithium-ion batteries(LIBs)due to its excellent specific capac-ity(592 mAh g^(−1)),suitable discharge voltage(0.5-1.0 V),and moderate volume change up...Li_(3)VO_(4) is a promising electrode material for next-generation lithium-ion batteries(LIBs)due to its excellent specific capac-ity(592 mAh g^(−1)),suitable discharge voltage(0.5-1.0 V),and moderate volume change upon charge/discharge,while it still suffers from low electronic conductivity that usually gives a poor rate capability,low initial coulombic efficiency,and large polarization,imposing a challenge on its practical applications.In this work,a partial surface phase transformation of Li_(3)VO_(4) was initiated via a freeze-drying method followed by a heat treatment in inert gas.Using this method,Li_(3)VO_(4) was integrated with a conductive layer LiVO_(2) and carbon matrix.The synergistic effect among Li_(3)VO_(4),LiVO_(2) layer,and carbon matrix was systematically studied by optimizing the treatment conditions.When treated at 600°C in Ar,Li_(3)VO_(4)-based composite delivered outstanding electrochemical properties,as expressed by a specific capacity(689 mAh g^(−1) at 0.1 A g^(−1) after 100 cycles),rate performance(i.e.,448 mAh g^(−1) at 2 A g^(−1)),and longtime cycle stability(523 mAh g^(−1) after 200 cycles at 0.2 A g^(−1)),which are superior to those without LiVO_(2) conductive layer when treated at the same temperature in air.The findings reported in this work may offer novel hints of preparing more advanced anodes and promote the applications of vanadate materials such as Li_(3)VO_(4) for next-generation lithium-ion batteries.展开更多
Among the various anodes,Li_(3)VO_(4)is a potential intercalation kind anode used in lithium-ion batteries(LIBs)that exhibits safer discharge voltage and higher capacity than graphite,a lower voltage plateau than Li_(...Among the various anodes,Li_(3)VO_(4)is a potential intercalation kind anode used in lithium-ion batteries(LIBs)that exhibits safer discharge voltage and higher capacity than graphite,a lower voltage plateau than Li_(4)Ti_(5)O_(12),and smaller volume difference in the Li^(+)intercalation/deintercalation process than metals and alloys.However,the comparatively low electronic conductivity,low initial coulombic efficiency(ICE)and serious capacity decay make the Li_(3)VO_(4)anode unviable when it comes to practical implementation.Therefore,this paper reviews the research progress of Li_(3)VO_(4)in recent years,mainly including the strategies of developing different synthesis methods to construct unique morphology,through coating,compositing or elemental doping to increase the ICE,electronic conductivity and the cycle constancy.Moreover,the application of Li_(3)VO_(4)anode materials in other energy storage systems is summarized.Lastly,the development prospect and challenge of Li_(3)VO_(4)anodes are discussed.展开更多
The safe operating voltage and low volume variation of Li_(3)VO_(4)(LVO)make it an ideal anode material for lithium(Li)-ion batteries.However,the insufficient understanding of the inner storage mechanism hinders the d...The safe operating voltage and low volume variation of Li_(3)VO_(4)(LVO)make it an ideal anode material for lithium(Li)-ion batteries.However,the insufficient understanding of the inner storage mechanism hinders the design of LVO-based electrodes.Herein,we investigate,for the first time,the Li-ion storage activity in LVO via Cl doping.Moreover,N-doped C coating was simultaneously achieved in the Cl doping process,resulting in synergistically improved reaction kinetics.As a result,the as-prepared Cl-doped Li_(3)VO_(4) coated with N-doped C(Cl-LVO@NC)electrodes deliver a discharge capacity of 884.1 mAh/g after 200 cycles at 0.2 A/g,which is the highest among all of the LVO-based electrodes.The Cl-LVO@NC electrodes also exhibit high-capacity retention of 331.1 mAh/g at 8.0 A/g and full capacity recovery after 5 periods of rate testing over 400 cycles.After 5000 cycles at 4.0 A/g,the discharge capacity can be maintained at 423.2 mAh/g,which is superior to most LVO-based electrodes.The Li-ion storage activity in LVO via Cl doping and significant improvement in the high-rate Li-ion storage reported in this work can be used as references for the design of advanced LVO-based electrodes for high-power applications.展开更多
Li_(3)VO_4 has been considered as a promising insertion-type anode for lithium-ion batteries due to its high theoretical specific capacity and suitable operating voltage platform. However, this promising anode still s...Li_(3)VO_4 has been considered as a promising insertion-type anode for lithium-ion batteries due to its high theoretical specific capacity and suitable operating voltage platform. However, this promising anode still suffers from poor electrical conductivity. To address this issue, herein, a porous carbon supported Li_(3)VO_4 composites(Li_(3)VO_4/C) via a facile agitation-drying method combined with subsequent calcination is reported, in which Ketjen black carbon with high porosity, easy dispersion and excellent conductivity can serve as one of carbon sources. The Li_(3)VO_4/C composite prepared at 700 ℃ with a carbon content of~10% exhibits the optimized structure. The void space of the composite accommodates the volume changes during the charge/discharge process.Meanwhile, the carbon shell serves as a conductive skeleton to provide bi-continuous Li ions and electrons pathways. Electrochemical results reveal that the composite delivers a high initial discharge capacity of 572 m Ahág^(-1) and maintains a capacity of 442.9 m Ahág^(-1) after 100 cycles at 100 m Aág^(-1). Even at a high current density of 2 Aág^(-1), a considerable capacity of 243.8 m Ahág^(-1) can still be obtained. This work provides a promising approach for the practical application of Li_(3)VO_4 as anode material for LIBs.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(Grant Nos.21571176,21671077,21771075 and 21871106).
文摘Li_(3)VO_(4) is a promising electrode material for next-generation lithium-ion batteries(LIBs)due to its excellent specific capac-ity(592 mAh g^(−1)),suitable discharge voltage(0.5-1.0 V),and moderate volume change upon charge/discharge,while it still suffers from low electronic conductivity that usually gives a poor rate capability,low initial coulombic efficiency,and large polarization,imposing a challenge on its practical applications.In this work,a partial surface phase transformation of Li_(3)VO_(4) was initiated via a freeze-drying method followed by a heat treatment in inert gas.Using this method,Li_(3)VO_(4) was integrated with a conductive layer LiVO_(2) and carbon matrix.The synergistic effect among Li_(3)VO_(4),LiVO_(2) layer,and carbon matrix was systematically studied by optimizing the treatment conditions.When treated at 600°C in Ar,Li_(3)VO_(4)-based composite delivered outstanding electrochemical properties,as expressed by a specific capacity(689 mAh g^(−1) at 0.1 A g^(−1) after 100 cycles),rate performance(i.e.,448 mAh g^(−1) at 2 A g^(−1)),and longtime cycle stability(523 mAh g^(−1) after 200 cycles at 0.2 A g^(−1)),which are superior to those without LiVO_(2) conductive layer when treated at the same temperature in air.The findings reported in this work may offer novel hints of preparing more advanced anodes and promote the applications of vanadate materials such as Li_(3)VO_(4) for next-generation lithium-ion batteries.
基金supported by the National Natural Science Foundation,China(Nos.21773057,52071132 and U1904216)the Zhongyuan Thousand People Plan-The Zhongyuan Youth Talent Support Program(in Science and Technology),China(No.ZYQR201810139)+1 种基金the Innovative Funds Plan of Henan University of Technology,China(No.2020ZKCJ04)Fundamental Research Funds for the Henan Provincial Colleges and Universities in Henan University of Technology,China(No.2018RCJH01)。
文摘Among the various anodes,Li_(3)VO_(4)is a potential intercalation kind anode used in lithium-ion batteries(LIBs)that exhibits safer discharge voltage and higher capacity than graphite,a lower voltage plateau than Li_(4)Ti_(5)O_(12),and smaller volume difference in the Li^(+)intercalation/deintercalation process than metals and alloys.However,the comparatively low electronic conductivity,low initial coulombic efficiency(ICE)and serious capacity decay make the Li_(3)VO_(4)anode unviable when it comes to practical implementation.Therefore,this paper reviews the research progress of Li_(3)VO_(4)in recent years,mainly including the strategies of developing different synthesis methods to construct unique morphology,through coating,compositing or elemental doping to increase the ICE,electronic conductivity and the cycle constancy.Moreover,the application of Li_(3)VO_(4)anode materials in other energy storage systems is summarized.Lastly,the development prospect and challenge of Li_(3)VO_(4)anodes are discussed.
基金supported by the National Natural Science Foundation of China(No.52101262)Distinguished Youth Foundation of Hubei Province(2019CFA084)+1 种基金Educational offi ce of Hubei Province(Q20201201)the 111 project(D20015).
文摘The safe operating voltage and low volume variation of Li_(3)VO_(4)(LVO)make it an ideal anode material for lithium(Li)-ion batteries.However,the insufficient understanding of the inner storage mechanism hinders the design of LVO-based electrodes.Herein,we investigate,for the first time,the Li-ion storage activity in LVO via Cl doping.Moreover,N-doped C coating was simultaneously achieved in the Cl doping process,resulting in synergistically improved reaction kinetics.As a result,the as-prepared Cl-doped Li_(3)VO_(4) coated with N-doped C(Cl-LVO@NC)electrodes deliver a discharge capacity of 884.1 mAh/g after 200 cycles at 0.2 A/g,which is the highest among all of the LVO-based electrodes.The Cl-LVO@NC electrodes also exhibit high-capacity retention of 331.1 mAh/g at 8.0 A/g and full capacity recovery after 5 periods of rate testing over 400 cycles.After 5000 cycles at 4.0 A/g,the discharge capacity can be maintained at 423.2 mAh/g,which is superior to most LVO-based electrodes.The Li-ion storage activity in LVO via Cl doping and significant improvement in the high-rate Li-ion storage reported in this work can be used as references for the design of advanced LVO-based electrodes for high-power applications.
基金financially supported by the National Natural Science Foundation of China (Nos. 51874362 and51872334)the Natural Science Foundation of Hunan Province,China(No. 2018JJ1036)the National Key Research and Development Program of China (No. 2018YFB0104200)。
文摘Li_(3)VO_4 has been considered as a promising insertion-type anode for lithium-ion batteries due to its high theoretical specific capacity and suitable operating voltage platform. However, this promising anode still suffers from poor electrical conductivity. To address this issue, herein, a porous carbon supported Li_(3)VO_4 composites(Li_(3)VO_4/C) via a facile agitation-drying method combined with subsequent calcination is reported, in which Ketjen black carbon with high porosity, easy dispersion and excellent conductivity can serve as one of carbon sources. The Li_(3)VO_4/C composite prepared at 700 ℃ with a carbon content of~10% exhibits the optimized structure. The void space of the composite accommodates the volume changes during the charge/discharge process.Meanwhile, the carbon shell serves as a conductive skeleton to provide bi-continuous Li ions and electrons pathways. Electrochemical results reveal that the composite delivers a high initial discharge capacity of 572 m Ahág^(-1) and maintains a capacity of 442.9 m Ahág^(-1) after 100 cycles at 100 m Aág^(-1). Even at a high current density of 2 Aág^(-1), a considerable capacity of 243.8 m Ahág^(-1) can still be obtained. This work provides a promising approach for the practical application of Li_(3)VO_4 as anode material for LIBs.