SnO2 hollow nanospheres were successfully synthesized via a facile one-step solvothermal method.Characterizations show that the as-prepared SnO2 spheres are of hollow structure with a diameter at around 50 nm,and espe...SnO2 hollow nanospheres were successfully synthesized via a facile one-step solvothermal method.Characterizations show that the as-prepared SnO2 spheres are of hollow structure with a diameter at around 50 nm,and especially,the shell of the spheres is assembled by single layer SnO2 nanocrystals.The surface area of the material reaches up to 202.5 m^2/g.As an anode material for Li ion batteries,the sample exhibited improved electrochemical performance compared with commercial SnO2 particles.After cycled at high current rate of 0.5 C,1 C and 0.5 C for 20 cycles,respectively,the electrode can maintain a capacity of 509 mAh/g.The suitable shell thickness/diameter ratio endows the good structural stability of the material during cycling,which promises the excellent cycling performance of the electrode.The large surface area and the ultra thin shell ensure the high rate performance of the material.展开更多
Computations have been widely used to explore new Li ion battery materials because of its remarkable advantages. In this review, we summarize the recent progress on computational investigation on anode materials in Li...Computations have been widely used to explore new Li ion battery materials because of its remarkable advantages. In this review, we summarize the recent progress on computational investigation on anode materials in Li ion batteries. By introducing the computational studies on Li storage capability in carbon nanotubes, graphene, alloys and oxides, we reveal that computations have successfully addressed many fundamental problems and are powerful tools to understand and design new anode materials for Li ion batteries.展开更多
基金financially supported by the National Basic Research Program of China(Nos.2010CB934700,2013CB934004,2011CB935704)National Natural Science Foundation of China(No.11079002)
文摘SnO2 hollow nanospheres were successfully synthesized via a facile one-step solvothermal method.Characterizations show that the as-prepared SnO2 spheres are of hollow structure with a diameter at around 50 nm,and especially,the shell of the spheres is assembled by single layer SnO2 nanocrystals.The surface area of the material reaches up to 202.5 m^2/g.As an anode material for Li ion batteries,the sample exhibited improved electrochemical performance compared with commercial SnO2 particles.After cycled at high current rate of 0.5 C,1 C and 0.5 C for 20 cycles,respectively,the electrode can maintain a capacity of 509 mAh/g.The suitable shell thickness/diameter ratio endows the good structural stability of the material during cycling,which promises the excellent cycling performance of the electrode.The large surface area and the ultra thin shell ensure the high rate performance of the material.
文摘采用简单的水解、热处理方法合成三氧化二铁(Fe2O3)负载在三维多级孔类石墨烯(3D HPG)上的复合材料.3D HPG有效的导电网络有利于负载纳米Fe2O3,使其呈均匀分散状态,并有效增强纳米复合物的导电率,提高Fe2O3利用率,抑制纳米Fe2O3的团聚,从而制得稳定、高性能的锂离子电池负极材料.Fe2O3-3D HPG电极在50m A·g-1电流密度下首次放电容量达1745 m Ah·g-1,50周期放电容量保持于1095 m Ah·g-1.
文摘Computations have been widely used to explore new Li ion battery materials because of its remarkable advantages. In this review, we summarize the recent progress on computational investigation on anode materials in Li ion batteries. By introducing the computational studies on Li storage capability in carbon nanotubes, graphene, alloys and oxides, we reveal that computations have successfully addressed many fundamental problems and are powerful tools to understand and design new anode materials for Li ion batteries.