期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于贝塞尔滤波的水平集正则化图像分割方法 被引量:2
1
作者 刘国奇 李晨静 《计算机科学》 CSCD 北大核心 2018年第3期283-287,293,共6页
针对水平集函数在演化过程中的初始化敏感和数值稳定性问题,提出了一种新的基于贝塞尔滤波的正则化方法,并将其嵌入到经典的可变区域拟合(Region-Scalable Fitting,RSF)模型中,从而构成新的能量模型。首先,利用K均值算法进行自动初始化... 针对水平集函数在演化过程中的初始化敏感和数值稳定性问题,提出了一种新的基于贝塞尔滤波的正则化方法,并将其嵌入到经典的可变区域拟合(Region-Scalable Fitting,RSF)模型中,从而构成新的能量模型。首先,利用K均值算法进行自动初始化,再加以修正生成标准的初始水平集函数,以解决RSF模型对初始化敏感的问题;其次,利用RSF模型自身优点对图像进行迭代分割,同时在迭代过程中利用提出的方法对水平集函数进行正则化处理,保持迭代过程中的稳定性;最后,实现精确的分割效果。实验结果表明,提出的正则化方法有效地保持了水平集函数的稳定性。将新的模型与多种基于区域的模型进行对比,仿真实验表明,提出的方法具有较高的算法效率与分割精度。 展开更多
关键词 水平集正则化 水平集演化 贝塞尔滤波 可变区域拟合模型 K均值
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部