Escherichia coli leucyl-tRNA synthetase (LeuRS) is one of aminoacyl-tRNA synthetases (aaRSs) and belongs to class 1 aaRSs. The apparent steady-state kinetics of the aminoacylation reaction catalyzed by LeuRS in the pr...Escherichia coli leucyl-tRNA synthetase (LeuRS) is one of aminoacyl-tRNA synthetases (aaRSs) and belongs to class 1 aaRSs. The apparent steady-state kinetics of the aminoacylation reaction catalyzed by LeuRS in the presence of some RE3+ were studied. The results show that Mg2+ can be substituted by RE3+ for the aminoacylation reaction. The apparent K-m values for ATP and leucine are markedly different between native and Mg2+-free tRNA(1)(Leu). At high concentration of ATP there is inhibitory effect on Mg2+-free tRNA but not on native tRNA, which indicates that metal ions are a substrate of the aminoacylation reaction.展开更多
文摘Escherichia coli leucyl-tRNA synthetase (LeuRS) is one of aminoacyl-tRNA synthetases (aaRSs) and belongs to class 1 aaRSs. The apparent steady-state kinetics of the aminoacylation reaction catalyzed by LeuRS in the presence of some RE3+ were studied. The results show that Mg2+ can be substituted by RE3+ for the aminoacylation reaction. The apparent K-m values for ATP and leucine are markedly different between native and Mg2+-free tRNA(1)(Leu). At high concentration of ATP there is inhibitory effect on Mg2+-free tRNA but not on native tRNA, which indicates that metal ions are a substrate of the aminoacylation reaction.
基金supported by the Natural Science Foundation of China (30170224 ,30270310 and 30330180) ,the Chinese Academy of Sciences (KSCX-2-2-04) ,Committee of Science and Technologyin Shanghai (02DJ140567)
基金supported by the National Natural Science Foundation of China (No. 31960192,31900842)the Natural Science Foundation of Jiangxi Province,China (No. 20192BAB205081,20202ACBL216004)+1 种基金the Science and Technology Foundation of Jiangxi Provincial Department of Education,China (No. GJJ180560)the Humanities and Social Sciences Foundation in Higher Institutions of Jiangxi Province,China (No. TY17210)。
文摘蛋白质代谢平衡紊乱是诱发骨骼肌萎缩的根本原因,蛋白质合成减少则直接导致衰老性骨骼肌萎缩的发生与发展。亮氨酰-tRNA合成酶(leucyl-tRNA synthetase, LeuRS)的经典功能是催化亮氨酸与其同工tRNA之间连接形成氨基酰,在生物体内遗传解码过程中具有重要作用。随着近年对LeuRS蛋白研究的深入,人们认为其可能通过行使非经典功能而在衰老骨骼肌蛋白质代谢稳态调节中发挥关键作用。本文综述了氨基酰-tRNA合成酶和LeuRS的结构与生物学特性,并重点对LeuRS作为细胞内亮氨酸传感器调控衰老骨骼肌细胞蛋白质合成的研究进展进行总结,分析了LeuRS响应运动与氨基酸摄入等合成代谢刺激,活化哺乳动物雷帕霉素靶蛋白复合物1 (mammalian target of rapamycin complex 1, mTORC1)信号转导通路的作用机制,以期为衰老性骨骼肌萎缩的预防和诊治提供新的思路。