To solve the wall-wetting problem in internal combustion engines,the physical and chemical etching methods are used to prepare different wettability surfaces with various microstructures.The evaporation characteristic...To solve the wall-wetting problem in internal combustion engines,the physical and chemical etching methods are used to prepare different wettability surfaces with various microstructures.The evaporation characteristics and morphological evolution processes of diesel and n-butanol droplets after hitting the various surfaces are investigated.The results show that the surface microstructures increase the surface roughness(Ra),enhancing the oleophilic property of the oleophilic surfaces.Compared with n-butanol droplets,the same surface shows stronger oleophobicity to diesel droplets.When a droplet hits an oleophilic property surface with a lower temperature,the stronger the oleophilicity,the shorter the evaporation time.For oleophilic surfaces,larger Ra leads to a higher Leidenfrost temperature(TLeid).The low TLeid caused by enhanced oleophobicity,dense microstructures and increased convex dome height facilitates droplet rebound and promotes the evaporation of the wall-impinging droplets into the cylinder.The evaporation rate of the droplets is not only related to the characteristics of the solid surfaces and the fuel droplets but also affected by the heat transfer rate to the droplets in different boiling regimes.The spreading diameter of a droplet on an oleophobic surface varies significantly less with time than that on an oleophilic surface under the same surface temperature.展开更多
The controllable transfer of droplets on the surface of objects has a wide application prospect in the fields of microfluidic devices,fog collection and so on.The Leidenfrost effect can be utilized to significantly re...The controllable transfer of droplets on the surface of objects has a wide application prospect in the fields of microfluidic devices,fog collection and so on.The Leidenfrost effect can be utilized to significantly reduce motion resistance.However,the use of 3D structures limits the widespread application of self-propulsion based on Leidenfrost droplets in microelectromechanical system.To manipulate Leidenfrost droplets,it is necessary to create 2D or quasi-2D geometries.In this study,femtosecond laser is applied to fabricate a surface with periodic hydrophobicity gradient(SPHG),enabling directional self-propulsion of Leidenfrost droplets.Flow field analysis within the Leidenfrost droplets reveals that the vapor layer between the droplets and the hot surface can be modulated by the SPHG,resulting in directional propulsion of the inner gas.The viscous force between the gas and liquid then drives the droplet to move.展开更多
In the Leidenfrost state, the liquid drop is levitated above a hot solid surface by a vapor layer generated via evaporation from the drop. The vapor layer thermally insulates the drop from the heating surface, causing...In the Leidenfrost state, the liquid drop is levitated above a hot solid surface by a vapor layer generated via evaporation from the drop. The vapor layer thermally insulates the drop from the heating surface, causing deteriorated heat transfer in a myriad of important engineering applications. Thus, it is highly desirable to suppress the Leidenfrost effect and elevate the Leidenfrost temperature. This paper presents a comprehensive review of recent literature concerning the Leidenfrost drops on micro/nanostructured surfaces with an emphasis on the enhancement of the Leidenfrost temperature. The basic physical processes of the Leidenfrost effect and the key characteristics of the Leidenfrost drops were first intro- duced. Then, the major findings of the influence of various micro/nanoscale surface structures on the Leidenfrost temperature were presented in detail, and the underlying enhancement mechanism for each specific surface topology was also discussed. It was concluded that multiscale hierarchical surfaces hold the best promise to significantly boost the Leidenfrost temperature by combin- ing the advantages of both micro- and nanoscale structures.展开更多
The interaction of evaporating droplets and hot catalyst particles plays a major role in heterogeneously catalysed reactions. The liquid feed is injected into a gas-solid flow and is mixed with the catalyst. The inter...The interaction of evaporating droplets and hot catalyst particles plays a major role in heterogeneously catalysed reactions. The liquid feed is injected into a gas-solid flow and is mixed with the catalyst. The interaction phenomena determine the evaporation time which should be minimised to keep the reactor vessel small. First measurements with a bed of fixed hot FCC-particles (fluid catalytic cracking) and two model fluids have been conducted. The interactions of ethanol and water droplets with the hot bed surface were captured via a high-speed camera. While the ethanol droplet developed a stable steam cushion due to Leidenfrost phenomena, water showed intense interaction and steam explosions which induced repulsion and atomisation of the droplet.展开更多
Laser fragmentation in liquid is an effective and environment-friendly processing technique capable of yielding colloidal nanoparticles and atomic clusters with a narrow size distribution. The advancement of this tech...Laser fragmentation in liquid is an effective and environment-friendly processing technique capable of yielding colloidal nanoparticles and atomic clusters with a narrow size distribution. The advancement of this technique can be facilitated by an improved understanding of processes that control the sizes, shapes, and structures of the produced nanoparticles. In this work, the dependence of the fragmentation mechanisms on the energy density deposited by the laser pulse is investigated in atomistic simulations performed for 20 nm Au nanoparticles irradiated in water by 10 ps laser pulses. The simulations reveal that the decrease in the absorbed laser energy leads to sequential transitions from the regime of “strong” phase explosion, when all products of an explosive phase decomposition of the irradiated nanoparticle are promptly injected into the water surrounding a nanobubble formed around the nanoparticle, to two distinct regimes of nanoparticle fragmentation leading to the formation of a large central nanoparticle surrounded by smaller satellite fragments. First, in the regime of “mild” phase explosion, the central nanoparticle is produced by the reflection of some of the hot metal droplets generated by the explosive decomposition of the nanoparticle from the boundary of the nanobubble. This reflection is attributed to the inverse Leidenfrost effect acting at the nanoscale. The reflected droplets converge in the center of the nanobubble and coalesce into a single droplet that solidifies shortly after the collapse of the nanobubble. Further decrease in the absorbed laser energy brings the irradiation conditions below the threshold for the phase explosion and results in the formation of a core-satellite structure of the fragmentation products through an interplay of the intense evaporation from the surface of the irradiated nanoparticle, evolution of the nanobubble, and condensation of the metal vapor into clusters and small satellite nanoparticles. The computational predictions are related to the experim展开更多
The problem of contact line pinning on surfaces is pervasive and contributes to problems from ring stains to ice formation.Here we provide a single conceptual framework for interfacial strategies encompassing five str...The problem of contact line pinning on surfaces is pervasive and contributes to problems from ring stains to ice formation.Here we provide a single conceptual framework for interfacial strategies encompassing five strategies for modifying the solid-liquid interface to remove pinning and increase droplet mobility.Three biomimetic strategies are included,(i)reducing the liquid-solid interfacial area inspired by the Lotus effect,(ii)converting the liquid-solid contact to a solid-solid contact by the formation of a liquid marble inspired by how galling aphids remove honeydew,and(iii)converting the liquid-solid interface to a liquid-lubricant contact by the use of a lubricant impregnated surface inspired by the Nepenthes Pitcher plant.Two further strategies are,(iv)converting the liquid-solid contact to a liquid-vapor contact by using the Leidenfrost effect,and(v)converting the contact to a liquid-liquid-like contact using slippery omniphobic covalent attachment of a liquid-like coating(SOCAL).Using these approaches,we explain how surfaces can be designed to have smart functionality whilst retaining the mobility of contact lines and droplets.Furthermore,we show how droplets can evaporate at constant contact angle,be positioned using a Cheerios effect,transported by boundary reconfiguration in an energy invariant manner,and drive the rotation of solid components in a Leidenfrost heat engine.Our conceptual framework enables the rationale design of surfaces which are slippery to liquids and is relevant to a diverse range of applications.展开更多
基金the National Natural Science Foundation of China(Project code:51676084)Jilin Province Specific Project of Industrial Technology Research&Development(Project code:2020C025-2)+2 种基金Natural Science Foundation of Jilin Province(Project code:20220101212JC)Free Exploration Project of Changsha Automotive Innovation Research Institute of Jilin University(Project code:JCZT20220202)2021“Interdisciplinary Integration and Innovation”Project of Jilin University(Project code:XJRCYB07).
文摘To solve the wall-wetting problem in internal combustion engines,the physical and chemical etching methods are used to prepare different wettability surfaces with various microstructures.The evaporation characteristics and morphological evolution processes of diesel and n-butanol droplets after hitting the various surfaces are investigated.The results show that the surface microstructures increase the surface roughness(Ra),enhancing the oleophilic property of the oleophilic surfaces.Compared with n-butanol droplets,the same surface shows stronger oleophobicity to diesel droplets.When a droplet hits an oleophilic property surface with a lower temperature,the stronger the oleophilicity,the shorter the evaporation time.For oleophilic surfaces,larger Ra leads to a higher Leidenfrost temperature(TLeid).The low TLeid caused by enhanced oleophobicity,dense microstructures and increased convex dome height facilitates droplet rebound and promotes the evaporation of the wall-impinging droplets into the cylinder.The evaporation rate of the droplets is not only related to the characteristics of the solid surfaces and the fuel droplets but also affected by the heat transfer rate to the droplets in different boiling regimes.The spreading diameter of a droplet on an oleophobic surface varies significantly less with time than that on an oleophilic surface under the same surface temperature.
基金supported by the Beijing Municipal Natural Science Foundation(JQ20015)National Key Research and Development Program of China(No.2022YFB4601300)+3 种基金the National Science Fund for Distinguished Young Scholars(No.52325505)the National Natural Science Foundation of China(NSFC)(No.52075041)the Joint Funds of the National Natural Science Foundation of China(Grant No.U2037205)the Open Project Program of Wuhan National Laboratory for Optoelectronics(No2021WNLOKF016)。
文摘The controllable transfer of droplets on the surface of objects has a wide application prospect in the fields of microfluidic devices,fog collection and so on.The Leidenfrost effect can be utilized to significantly reduce motion resistance.However,the use of 3D structures limits the widespread application of self-propulsion based on Leidenfrost droplets in microelectromechanical system.To manipulate Leidenfrost droplets,it is necessary to create 2D or quasi-2D geometries.In this study,femtosecond laser is applied to fabricate a surface with periodic hydrophobicity gradient(SPHG),enabling directional self-propulsion of Leidenfrost droplets.Flow field analysis within the Leidenfrost droplets reveals that the vapor layer between the droplets and the hot surface can be modulated by the SPHG,resulting in directional propulsion of the inner gas.The viscous force between the gas and liquid then drives the droplet to move.
文摘In the Leidenfrost state, the liquid drop is levitated above a hot solid surface by a vapor layer generated via evaporation from the drop. The vapor layer thermally insulates the drop from the heating surface, causing deteriorated heat transfer in a myriad of important engineering applications. Thus, it is highly desirable to suppress the Leidenfrost effect and elevate the Leidenfrost temperature. This paper presents a comprehensive review of recent literature concerning the Leidenfrost drops on micro/nanostructured surfaces with an emphasis on the enhancement of the Leidenfrost temperature. The basic physical processes of the Leidenfrost effect and the key characteristics of the Leidenfrost drops were first intro- duced. Then, the major findings of the influence of various micro/nanoscale surface structures on the Leidenfrost temperature were presented in detail, and the underlying enhancement mechanism for each specific surface topology was also discussed. It was concluded that multiscale hierarchical surfaces hold the best promise to significantly boost the Leidenfrost temperature by combin- ing the advantages of both micro- and nanoscale structures.
基金supported by the Deutsche Forschungsgemeinschaft(WI 972/20-1)
文摘The interaction of evaporating droplets and hot catalyst particles plays a major role in heterogeneously catalysed reactions. The liquid feed is injected into a gas-solid flow and is mixed with the catalyst. The interaction phenomena determine the evaporation time which should be minimised to keep the reactor vessel small. First measurements with a bed of fixed hot FCC-particles (fluid catalytic cracking) and two model fluids have been conducted. The interactions of ethanol and water droplets with the hot bed surface were captured via a high-speed camera. While the ethanol droplet developed a stable steam cushion due to Leidenfrost phenomena, water showed intense interaction and steam explosions which induced repulsion and atomisation of the droplet.
基金supported by the National Science Foundation(NSF)(Grant Nos.DMR-1708486,and CMMI-1663429)funded by Deutsche Forschungsgemeinschaft(Grant No.BA 3580/22-1)+1 种基金the Research Award of the Alexander von Humboldt Foundationthe NSF through the Extreme Science and Engineering Discovery Environment(Grant No.TGDMR110090)。
文摘Laser fragmentation in liquid is an effective and environment-friendly processing technique capable of yielding colloidal nanoparticles and atomic clusters with a narrow size distribution. The advancement of this technique can be facilitated by an improved understanding of processes that control the sizes, shapes, and structures of the produced nanoparticles. In this work, the dependence of the fragmentation mechanisms on the energy density deposited by the laser pulse is investigated in atomistic simulations performed for 20 nm Au nanoparticles irradiated in water by 10 ps laser pulses. The simulations reveal that the decrease in the absorbed laser energy leads to sequential transitions from the regime of “strong” phase explosion, when all products of an explosive phase decomposition of the irradiated nanoparticle are promptly injected into the water surrounding a nanobubble formed around the nanoparticle, to two distinct regimes of nanoparticle fragmentation leading to the formation of a large central nanoparticle surrounded by smaller satellite fragments. First, in the regime of “mild” phase explosion, the central nanoparticle is produced by the reflection of some of the hot metal droplets generated by the explosive decomposition of the nanoparticle from the boundary of the nanobubble. This reflection is attributed to the inverse Leidenfrost effect acting at the nanoscale. The reflected droplets converge in the center of the nanobubble and coalesce into a single droplet that solidifies shortly after the collapse of the nanobubble. Further decrease in the absorbed laser energy brings the irradiation conditions below the threshold for the phase explosion and results in the formation of a core-satellite structure of the fragmentation products through an interplay of the intense evaporation from the surface of the irradiated nanoparticle, evolution of the nanobubble, and condensation of the metal vapor into clusters and small satellite nanoparticles. The computational predictions are related to the experim
基金Many co-workers contributed to the work described and to development of the ideas including,Dr.Prashant Agrawal,Mr Steven Armstrong,Dr.Linzi Dodd,Dr.Jian(James)H.Guan,Dr.Elfego Ruiz-Gutierrez,Dr.Halim Kusumaatmaja,Dr.Bethany V.Orme,Professor Khellil Sefiane,Dr.Ciro Semprebon,Professor Dominic Vella,Professor David Wood and Dr.Ben B.Xu.This work was financially supported in part by the UK Engineering&Physical Sciences Research Council(EPSRC grants EP/P005896/1 and EP/P005705/1)and Reece Innovation Ltd.
文摘The problem of contact line pinning on surfaces is pervasive and contributes to problems from ring stains to ice formation.Here we provide a single conceptual framework for interfacial strategies encompassing five strategies for modifying the solid-liquid interface to remove pinning and increase droplet mobility.Three biomimetic strategies are included,(i)reducing the liquid-solid interfacial area inspired by the Lotus effect,(ii)converting the liquid-solid contact to a solid-solid contact by the formation of a liquid marble inspired by how galling aphids remove honeydew,and(iii)converting the liquid-solid interface to a liquid-lubricant contact by the use of a lubricant impregnated surface inspired by the Nepenthes Pitcher plant.Two further strategies are,(iv)converting the liquid-solid contact to a liquid-vapor contact by using the Leidenfrost effect,and(v)converting the contact to a liquid-liquid-like contact using slippery omniphobic covalent attachment of a liquid-like coating(SOCAL).Using these approaches,we explain how surfaces can be designed to have smart functionality whilst retaining the mobility of contact lines and droplets.Furthermore,we show how droplets can evaporate at constant contact angle,be positioned using a Cheerios effect,transported by boundary reconfiguration in an energy invariant manner,and drive the rotation of solid components in a Leidenfrost heat engine.Our conceptual framework enables the rationale design of surfaces which are slippery to liquids and is relevant to a diverse range of applications.