We propose a novel numerical approach for delay differential equations with vanishing proportional delays based on spectral methods. A Legendre-collocation method is employed to obtain highly accurate numerical approx...We propose a novel numerical approach for delay differential equations with vanishing proportional delays based on spectral methods. A Legendre-collocation method is employed to obtain highly accurate numerical approximations to the exact solution. It is proved theoretically and demonstrated numerically that the proposed method converges exponentially provided that the data in the are smooth. given pantograph delay differential equation展开更多
For the problems occurring in a least square method model, a fuzzy model, and a neural network model for flatness pattern recognition, a fuzzy neural network model for flatness pattern recognition with only three-inpu...For the problems occurring in a least square method model, a fuzzy model, and a neural network model for flatness pattern recognition, a fuzzy neural network model for flatness pattern recognition with only three-input and three output signals was proposed with Legendre orthodoxy polynomial as basic pattern, based on fuzzy logic expert experiential knowledge and genetic-BP hybrid optimization algorithm. The model not only had definite physical meanings in its inner nodes, but also had strong self-adaptability, anti interference ability, high recognition precision, and high velocity, thereby meeting the demand of high-precision flatness control for cold strip mill and providing a convenient, practical, and novel method for flatness pattern recognition.展开更多
In this paper,we investigate the Legendre Galerkin spectral approximation of quadratic optimal control problems governed by parabolic equations.A spectral approximation scheme for the parabolic optimal control problem...In this paper,we investigate the Legendre Galerkin spectral approximation of quadratic optimal control problems governed by parabolic equations.A spectral approximation scheme for the parabolic optimal control problem is presented.We obtain a posteriori error estimates of the approximated solutions for both the state and the control.展开更多
The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and ...The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and Collocation methods are included for solving fractional order differential equations, which is broadened to acquire the approximate solutions of fractional order systems with differentiable polynomials, namely Legendre polynomials, as basis functions. The algorithm of the residual formulations of matrix form can be coded efficiently. The interpretation of Caputo fractional derivatives is employed here. We have demonstrated these methods numerically through a few examples of linear and nonlinear BVPs. The results in absolute errors show that the present method efficiently finds the numerical solutions of fractional order systems of differential equations.展开更多
A one-dimensional non-intrusive Polynomial Chaos (PC) method is applied in Uncertainty Quantification (UQ) studies for CFD-based ship performances simulations. The uncertainty properties of Expected Value (EV) a...A one-dimensional non-intrusive Polynomial Chaos (PC) method is applied in Uncertainty Quantification (UQ) studies for CFD-based ship performances simulations. The uncertainty properties of Expected Value (EV) and Standard Deviation (SD) are evaluated by solving the PC coefficients from a linear system of algebraic equations. The one-dimensional PC with the Legendre polynomials is applied to: (1) stochastic input domain and (2) Cumulative Distribution Function (CDF) image domain, allowing for more flexibility. The PC method is validated with the Monte-Carlo benchmark results in several high-fidelity, CFD-based, ship UQ problems, evaluating the geometrical, operational and environmental uncertainties for the Delft Catamaran 372. Convergence is studied versus PC order P for both EV and SD, showing that high order PC is not necessary for present applications. Comparison is carried out for PC with/without the least square minimization when solving the PC coefficients. The least square minimization, using larger number of CFD samples, is recommended for current test cases. The study shows the potentials of PC method in Robust Design Optimization (RDO) and Reliability-Based Design Optimization (RBDO) of ship hydrodynamic performances.展开更多
In expansions of arbitrary functions in Bessel functions or Spherical Bessel functions, a dual partner set of polynomials play a role. For the Bessel functions, these are the Chebyshev polynomials of first kind and fo...In expansions of arbitrary functions in Bessel functions or Spherical Bessel functions, a dual partner set of polynomials play a role. For the Bessel functions, these are the Chebyshev polynomials of first kind and for the Spherical Bessel functions the Legendre polynomials. These two sets of functions appear in many formulas of the expansion and in the completeness and (bi)-orthogonality relations. The analogy to expansions of functions in Taylor series and in moment series and to expansions in Hermite functions is elaborated. Besides other special expansion, we find the expansion of Bessel functions in Spherical Bessel functions and their inversion and of Chebyshev polynomials of first kind in Legendre polynomials and their inversion. For the operators which generate the Spherical Bessel functions from a basic Spherical Bessel function, the normally ordered (or disentangled) form is found.展开更多
In this paper along with the previous studies on analyzing the binomial coefficients, we will complete the proof of a theorem. The theorem states that for two positive integers n and k, when n ≥ k - 1, there always e...In this paper along with the previous studies on analyzing the binomial coefficients, we will complete the proof of a theorem. The theorem states that for two positive integers n and k, when n ≥ k - 1, there always exists at least a prime number p such that kn p ≤ (k +1)n. The Bertrand-Chebyshev’s theorem is a special case of this theorem when k = 1. In the field of prime number distribution, just as the prime number theorem provides the approximate number of prime numbers relative to natural numbers, while the new theory indicates that prime numbers exist in the specific intervals between natural numbers, that is, the new theorem provides the approximate positions of prime numbers among natural numbers.展开更多
Guidance is offered for understanding and using the Legendre transformation and its associated duality among functions and curves. The genesis of this paper was encounters with colleagues and students asking about the...Guidance is offered for understanding and using the Legendre transformation and its associated duality among functions and curves. The genesis of this paper was encounters with colleagues and students asking about the transformation. A main feature is simplicity of exposition, while keeping in mind the purpose or application for using the transformation.展开更多
In this paper, we prove Legendre’s conjecture: There is a prime number between n<sup>2</sup> and (n +1)<sup>2</sup> for every positive integer n. We also prove three related conjectures. The m...In this paper, we prove Legendre’s conjecture: There is a prime number between n<sup>2</sup> and (n +1)<sup>2</sup> for every positive integer n. We also prove three related conjectures. The method that we use is to analyze binomial coefficients. It is developed by the author from the method of analyzing binomial central coefficients, that was used by Paul Erdős in his proof of Bertrand’s postulate - Chebyshev’s theorem.展开更多
The Legendre rational approximation is investigated. Some approximation results are established, which form the mathematical foundation of a new spectral method on the whole line. A model problem is considered. Numeri...The Legendre rational approximation is investigated. Some approximation results are established, which form the mathematical foundation of a new spectral method on the whole line. A model problem is considered. Numerical results show the efficiency of this new approach.展开更多
In this paper,we prove two supercongruences conjectured by Z.-W.Sun via the Wilf-Zeilberger method.One of them is,for any prime p>3,4F3[7/6 1/2 1/2 1/2 1/6 1 1]-1/8]-1/2≡p(-2/p)+p^(3)/4(2/p)Ep-3 (mod p^(4))where(&...In this paper,we prove two supercongruences conjectured by Z.-W.Sun via the Wilf-Zeilberger method.One of them is,for any prime p>3,4F3[7/6 1/2 1/2 1/2 1/6 1 1]-1/8]-1/2≡p(-2/p)+p^(3)/4(2/p)Ep-3 (mod p^(4))where(·/p)stands for the Legendre symbol,and E_(n)is the n-th Euler number.展开更多
基金The research of HB was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada and by the Research Grants Council of Hong KongThe research of TT was supported by Hong Kong Baptist University,the Research Grants Council of Hong Kong and he was supported in part by the Chinese Academy of Sciences while visiting its Institute of Computational Mathematics.
文摘We propose a novel numerical approach for delay differential equations with vanishing proportional delays based on spectral methods. A Legendre-collocation method is employed to obtain highly accurate numerical approximations to the exact solution. It is proved theoretically and demonstrated numerically that the proposed method converges exponentially provided that the data in the are smooth. given pantograph delay differential equation
基金Item Sponsored by National Natural Science Foundation of China and Shanghai Baosteel Group Co(50675186)Provincial Natural Science Foundation of Hebei Province of China(E2006001038)
文摘For the problems occurring in a least square method model, a fuzzy model, and a neural network model for flatness pattern recognition, a fuzzy neural network model for flatness pattern recognition with only three-input and three output signals was proposed with Legendre orthodoxy polynomial as basic pattern, based on fuzzy logic expert experiential knowledge and genetic-BP hybrid optimization algorithm. The model not only had definite physical meanings in its inner nodes, but also had strong self-adaptability, anti interference ability, high recognition precision, and high velocity, thereby meeting the demand of high-precision flatness control for cold strip mill and providing a convenient, practical, and novel method for flatness pattern recognition.
基金the National Basic Research Programthe National Natural Science Foundation of China(Grant No.2005CB321703)+2 种基金Scientific Research Fund of Hunan Provincial Education Departmentthe Outstanding Youth Scientist of the National Natural Science Foundation of China(Grant No.10625106)the National Basic Research Program of China(Grant No.2005CB321701)
文摘In this paper,we investigate the Legendre Galerkin spectral approximation of quadratic optimal control problems governed by parabolic equations.A spectral approximation scheme for the parabolic optimal control problem is presented.We obtain a posteriori error estimates of the approximated solutions for both the state and the control.
文摘The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and Collocation methods are included for solving fractional order differential equations, which is broadened to acquire the approximate solutions of fractional order systems with differentiable polynomials, namely Legendre polynomials, as basis functions. The algorithm of the residual formulations of matrix form can be coded efficiently. The interpretation of Caputo fractional derivatives is employed here. We have demonstrated these methods numerically through a few examples of linear and nonlinear BVPs. The results in absolute errors show that the present method efficiently finds the numerical solutions of fractional order systems of differential equations.
基金Project supported by the National Natural Science Foundation of China(Grant No.50979060)
文摘A one-dimensional non-intrusive Polynomial Chaos (PC) method is applied in Uncertainty Quantification (UQ) studies for CFD-based ship performances simulations. The uncertainty properties of Expected Value (EV) and Standard Deviation (SD) are evaluated by solving the PC coefficients from a linear system of algebraic equations. The one-dimensional PC with the Legendre polynomials is applied to: (1) stochastic input domain and (2) Cumulative Distribution Function (CDF) image domain, allowing for more flexibility. The PC method is validated with the Monte-Carlo benchmark results in several high-fidelity, CFD-based, ship UQ problems, evaluating the geometrical, operational and environmental uncertainties for the Delft Catamaran 372. Convergence is studied versus PC order P for both EV and SD, showing that high order PC is not necessary for present applications. Comparison is carried out for PC with/without the least square minimization when solving the PC coefficients. The least square minimization, using larger number of CFD samples, is recommended for current test cases. The study shows the potentials of PC method in Robust Design Optimization (RDO) and Reliability-Based Design Optimization (RBDO) of ship hydrodynamic performances.
文摘In expansions of arbitrary functions in Bessel functions or Spherical Bessel functions, a dual partner set of polynomials play a role. For the Bessel functions, these are the Chebyshev polynomials of first kind and for the Spherical Bessel functions the Legendre polynomials. These two sets of functions appear in many formulas of the expansion and in the completeness and (bi)-orthogonality relations. The analogy to expansions of functions in Taylor series and in moment series and to expansions in Hermite functions is elaborated. Besides other special expansion, we find the expansion of Bessel functions in Spherical Bessel functions and their inversion and of Chebyshev polynomials of first kind in Legendre polynomials and their inversion. For the operators which generate the Spherical Bessel functions from a basic Spherical Bessel function, the normally ordered (or disentangled) form is found.
文摘In this paper along with the previous studies on analyzing the binomial coefficients, we will complete the proof of a theorem. The theorem states that for two positive integers n and k, when n ≥ k - 1, there always exists at least a prime number p such that kn p ≤ (k +1)n. The Bertrand-Chebyshev’s theorem is a special case of this theorem when k = 1. In the field of prime number distribution, just as the prime number theorem provides the approximate number of prime numbers relative to natural numbers, while the new theory indicates that prime numbers exist in the specific intervals between natural numbers, that is, the new theorem provides the approximate positions of prime numbers among natural numbers.
文摘Guidance is offered for understanding and using the Legendre transformation and its associated duality among functions and curves. The genesis of this paper was encounters with colleagues and students asking about the transformation. A main feature is simplicity of exposition, while keeping in mind the purpose or application for using the transformation.
文摘In this paper, we prove Legendre’s conjecture: There is a prime number between n<sup>2</sup> and (n +1)<sup>2</sup> for every positive integer n. We also prove three related conjectures. The method that we use is to analyze binomial coefficients. It is developed by the author from the method of analyzing binomial central coefficients, that was used by Paul Erdős in his proof of Bertrand’s postulate - Chebyshev’s theorem.
文摘The Legendre rational approximation is investigated. Some approximation results are established, which form the mathematical foundation of a new spectral method on the whole line. A model problem is considered. Numerical results show the efficiency of this new approach.
基金Supported by the National Natural Science Foundation of China(Grant No.12001288)。
文摘In this paper,we prove two supercongruences conjectured by Z.-W.Sun via the Wilf-Zeilberger method.One of them is,for any prime p>3,4F3[7/6 1/2 1/2 1/2 1/6 1 1]-1/8]-1/2≡p(-2/p)+p^(3)/4(2/p)Ep-3 (mod p^(4))where(·/p)stands for the Legendre symbol,and E_(n)is the n-th Euler number.